Skip to main content

Advertisement

Log in

Interpolated potential energy surface for abstraction and exchange reactions of NH 3 + H and deuterated analogues

  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract.

An ab initio interpolated potential energy surface for the hydrogen abstraction and exchange reactions between ammonia and a hydrogen atom is reported. The interpolation is constructed over a set of data points calculated at the unrestricted coupled cluster approximation, using single and double excitations, and including the triple excitations non-iteratively. New data point selection methods were used to improve the convergence and accuracy of the interpolated surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedrichs G, Wagner HG (2000) Zeit fur Physikalische Chemie 214:1151

    Google Scholar 

  2. Willis C, Boyd AW, Miller OA (1969) Can J Chem 47:3007

    Google Scholar 

  3. Dove JE, Nip WS (1974) Can J Chem 52:1171

    Google Scholar 

  4. Demissy M, Lesclaux R (1980) J Am Chem Soc 102:2897

    Google Scholar 

  5. Michael JV, Sutherland JW, Klemm RB (1986) J Phys Chem 90:497

    Google Scholar 

  6. Hack W, Rouveirolles P, Wagner HG (1986) J Phys Chem 90:2505

    Google Scholar 

  7. Marshall P, Fontijn A (1986) J Chem Phys 85:2637

    Google Scholar 

  8. Marshall P, Fontijn A (1987) J Phys Chem 91:6297

    Google Scholar 

  9. Sutherland JW, Michael JV (1988) J Chem Phys 88:830

    Google Scholar 

  10. Ko T, Marshall P, Fontijn A (1990) J Phys Chem 94:1401

    Google Scholar 

  11. Garrett B, Koszykowski M, Melius C, Page M (1990) J Phys Chem 94:7096

    Google Scholar 

  12. Leroy G, Sana M, Tinant A (1984) Can J Chem 63:1447

    Google Scholar 

  13. Gordon MS, Gano DR, Boatz JA (1983) J Am Chem Soc 105:5771

    Google Scholar 

  14. Kraka E, Gauss J, Cremer D (1993) J Chem Phys 99:5306

    Google Scholar 

  15. Cardy H, Liotard D, Dargelos A (1983) Chem Phys 77:287

  16. Chen FW, Davidson ER (2001) J Phys Chem A 105:10915

    Google Scholar 

  17. Kassab E, Evleth EM (1987) J Am Chem Soc 109:1653

    Google Scholar 

  18. Park JK (1997) J Chem Phys 107:6795

    Google Scholar 

  19. Park JK (1998) J Chem Phys 109:9753

    Google Scholar 

  20. Fuller RO, Bettens RPA, Collins MA (2001) J Chem Phys 114:10711

    Google Scholar 

  21. Barreto P, Alessandra FA, Gargano R (2003) J Mol Struct (Theochem) 639:167

    Google Scholar 

  22. Cardy H, Liotard D, Dargelos A (1980) Nouveau J de Chimie 4:751

    Google Scholar 

  23. Corchado JC, Espinosa-Garcia J (1997) J Chem Phys 106:4013

    Google Scholar 

  24. Espinosa-Garcia J, Corchado JC (1994) J Chem Phys 101:1333

    Google Scholar 

  25. Espinosa-Garcia J, Tolosa S, Corchado JC (1994) J Phys Chem 98:2337

    Google Scholar 

  26. Espinosa-Garcia J, Corchado JC (1997) J Phys Chem A 101:7336

    Google Scholar 

  27. Henon E, Bohr F (2000) J Mol Struct (Theochem) 531:283

    Google Scholar 

  28. Mebel AM, Moskaleva LV, Lin MC (1999) J Mol Struct (Theochem) 461–462:223

  29. Bettens RPA, Collins MA (1999) J Chem Phys 111:816

    Google Scholar 

  30. Collins MA (2002) Theor Chem Acc 108:313

    Google Scholar 

  31. Jordan MJT, Thompson KC, Collins MA (1995) J Chem Phys 102:5647

    Google Scholar 

  32. Thompson KC, Collins MA (1997) J Chem Soc Faraday Trans 93:871

    Google Scholar 

  33. Ischtwan J, Collins MA (1994) J Chem Phys 100:8080

    Google Scholar 

  34. Moyano GE, Collins MA (2004) J Chem Phys 121:9769

    Google Scholar 

  35. Sattelmeyer KW, Schaefer III HF, Stanton JF (2001) J Chem Phys114:9863

  36. NIST Chemistry WebBook (March, 2003) http://webbook.nist.gov/chemistry/

  37. Frisch GW, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery J, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) GAUSSIAN 98 Revision A.6 (Gaussian Inc., Pittsburgh)

  38. Amos RD, Bernhardsson A, Berning A, Celani P, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Knowles PJ, Korona T, Lindh R, Lloyd AW, McNicholas SJ, Manby FR, Meyer W, Mura ME, Nicklass A, Palmieri P, Pitzer R, Rauhut G, Schütz M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Werner H-J (2002) MOLPRO version 2002.3

  39. Schranz HW, Nordholm S, Nyman G (1991) J Chem Phys 94:1487

    Google Scholar 

  40. Brouard M, Burak I, Minayev D, O’Keeffe P, Vallance C, Aoiz FJ, Banares L, Castillo JF, Zhang DH, Collins MA (2003) J Chem Phys 118:1162

    Google Scholar 

  41. Castillo JF, Aoiz FJ, Banares L, Collins MA (2004) J Phys Chem A 108:6611

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Collins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moyano, G., Collins, M. Interpolated potential energy surface for abstraction and exchange reactions of NH 3 + H and deuterated analogues. Theor Chem Acc 113, 225–232 (2005). https://doi.org/10.1007/s00214-004-0626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-004-0626-8

Keywords

Navigation