Skip to main content
Log in

Novel perspectives in quantum dynamics

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In the field of theoretical chemistry, we focus on the sub-discipline of quantum dynamics. Special emphasis is placed on novel methods which can provide predictions for medium-sized and large systems and on the difficulties encountered when facing the huge dimension of the primitive basis within a quantum mechanical framework. We try to highlight the possibilities of applications of these methods to atmospheric or astrophysical spectroscopy and organic chemistry and to bring out general perspectives, in particular via comparisons with the electronic structure theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schinke R (1993) Photodissociation dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  2. Wyatt RE, Zhang JZH (eds) (1996) Dynamics of molecules and chemical reactions. Marcel Dekker, New York

    Google Scholar 

  3. Chergui M (eds) (1996) Femtochemistry. World Scientific, Singapore

    Google Scholar 

  4. Zewail AH (1994) Femtochemistry – ultrafast dynamics of the chemical bond. World Scientific, Singapore

    Google Scholar 

  5. Ihee H, Lobastov V, Gomez U, Goodson B, Srinivasan R, Ruan C-Y, Zewail AH (2001). Science 291:385

    Google Scholar 

  6. Saykally RJ, Blake GA (1993). Science 259:1570

    CAS  Google Scholar 

  7. Fellers RS, Braly LB, Saykally RJ, Leforestier C (1999). Science 284:6306

    Article  Google Scholar 

  8. Boyarkin O, Kowalszyk M, Rizzo T (2003). J Chem Phys 118:93

    Article  CAS  Google Scholar 

  9. Romanini D, Campargue A (1996). Chem Phys Lett 254:52

    Article  CAS  Google Scholar 

  10. Espinosa-García J, Corchado JC, Truhlar DG (1997) The importance of quantum effects for c-h bond activation reactions. J Am Chem Soc 119:9891

    Article  Google Scholar 

  11. Truhlar DG, Gao J, Alhambra C, Garcia-Viloca M, Corchado J, Sánchez ML, Villà J (2002) The incorporation of quantum effects in enzyme kinetics modeling. Acc Chem Res 35:341

    Article  PubMed  CAS  Google Scholar 

  12. Truhlar DG, Gao J, Alhambra C, Garcia-Viloca M, Alhambra C, Corchado J, Sánchez ML, Villà J (2004) Ensemble-averaged variational transition state theory with optimized multidimensional tunneling for enzyme kinetics and other condensed-phase reactions. Int J Quant Chem 100:1136

    Article  CAS  Google Scholar 

  13. Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Robb MA, Cheeseman JR, Keith T, Petersson GA, Montgomery JA, Raghavachari K, Al-Laham MA, Zakrzewski VG, Ortiz JV, Foresman JB, Cioslowski J, Stefanov BB, Nanayakkara A, Challacombe M, Peng CY, Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts R, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J, Stewart JP, Head-Gordon M, Gonzalez C, Pople JA (1995) GAUSSIAN 94, revision C.2

  14. Werner H-J, Knowles PJ MOLPRO is a package of ab initio programs. Further information can be obtained from http://www.tc.bham.ac.uk/molpro

  15. Miller WH (1975). J Chem Phys 62:1899

    Article  CAS  Google Scholar 

  16. Heller EJ (1975) Time-dependent approach to semiclassical dynamics. J Chem Phys 62:1544

    Article  CAS  Google Scholar 

  17. Thoss M, Miller WH, Stock G (2000) Semiclassical description of nonadiabatic quantum dynamics: application to the s1–s2 conical intersection in pyrazine. J Chem Phys 112:10282–10292

    Article  CAS  Google Scholar 

  18. Miller WH (2001). J Phys Chem 105:2942

    Article  CAS  Google Scholar 

  19. Billing GD, Balakrishnan N, Marković N (1996) Application of semiclassical dynamics to chemical reactions. In: Wyatt RE, Zhang JZH (eds) Dynamics of molecules and chemical reactions. Marcel Dekker, New York, pp 531–560

    Google Scholar 

  20. Tully JC (1998) Mixed quantum–classical dynamics. Farad Discuss 110:407–419

    Article  CAS  Google Scholar 

  21. Köppel H, Domcke W, Cederbaum LS (1984) Multimode molecular dynamics beyond the Born-Oppenheimer approximation. Adv Chem Phys 57:59

    Google Scholar 

  22. Sidis V (1992). Adv Chem Phys 82:73

    CAS  Google Scholar 

  23. Cederbaum LS (2004) Born-oppenheimer approximation and beyond. In: Domcke W, Yarkony DR, Köppel H (eds) Conical intersections. World Scientific, Singapore, pp 3–40

    Google Scholar 

  24. Köppel H (2004) Diabatic representation: methods for the construction of diabatic states. In: Domcke W, Yarkony DR, Köppel H (eds) Conical intersections. World Scientific, Singapore, pp 175–204

    Google Scholar 

  25. Neuhauser D (1990) Bound state eigenfunctions from wave packets: Time → energy resolution. J Chem Phys 93:2611

    Article  CAS  Google Scholar 

  26. Mandelshtam VA, Taylor HS (1998) Multidimensional harmonic inversion by filter-diagonalization. J Chem Phys 108:9970

    Article  CAS  Google Scholar 

  27. Narevicius E, Neuhauser D, Korsch HJ, Moiseyev N (1997) Resonances from short time complex-scaled cross-correlation probability amplitudes by the filter-diagonalization method. Chem Phys Lett 276:250

    Article  CAS  Google Scholar 

  28. Beck MH, Meyer H-D (1998) Extracting accurate bound-state spectra from approximate wave packet propagation using the filter-diagonalization method. J Chem Phys 109:3730–3741

    Article  CAS  Google Scholar 

  29. Gatti F, Beck MH, Worth GA, Meyer H-D (2001) A hybrid approach of the multi-configuration time-dependent Hartree and filter-diagonalisation methods for computing bound-state spectra. Application to HO2. PCCP 3:1576–1582

    CAS  Google Scholar 

  30. Chakraborty A, Truhlar DG (2005). Proc Nat Acad Sci USA 102:6744

    Article  PubMed  CAS  Google Scholar 

  31. Routberg A, Gerber RB, Elber R, Ratner MA (1995). Science 268:1319

    PubMed  Google Scholar 

  32. Li ZM, Gerber RB (1995). Chem Phys Lett 243:257

    Article  CAS  Google Scholar 

  33. Jung JO, Gerber RB (1996). J Chem Phys 105:10682

    Article  CAS  Google Scholar 

  34. Bihary Z, Gerber RB, Apkarian VA (2001) Vibrational self-consistent field approach to anharmonic spectroscopy of molecules in solids: application to iodine in argon matrix. J Chem Phys 115:2695

    Article  CAS  Google Scholar 

  35. Bowman JM (1986). Acc Chem Res 19:202

    Article  CAS  Google Scholar 

  36. Carter S, Culik SJ, Bowman JM (1997) Vibrational self-consistent field method for many-mode systems: a new approach and application to the vibrations of co adsorbed on cu(100). J Chem Phys 107:10458

    Article  CAS  Google Scholar 

  37. Chakraborty A, Truhlar DG, Bowman JM, Carter S (2004). J Chem Phys 121:2071

    Article  PubMed  CAS  Google Scholar 

  38. Bowman JM (2000). Science 290:724

    Article  PubMed  CAS  Google Scholar 

  39. Wilson E, Decius J, Cross P (1955) Molecular vibrations. McGraw-Hill, New York

    Google Scholar 

  40. Culot F, Liévin J (1994). J Theor Chim Acta 89:227

    Article  CAS  Google Scholar 

  41. Culot F, Laruelle F, Liévin J (1995). J Theor Chim Acta 92:211

    CAS  Google Scholar 

  42. Bačić Z, Light JC (1986) Highly excited vibrational levels of “floppy” triatomic molecules: a discrete variable representation – distributed Gaussian approach. J Chem Phys 85:4594

    Article  Google Scholar 

  43. Qiu Y, Bačić Z (1997). J Chem Phys 106:2158

    Article  CAS  Google Scholar 

  44. Lanczos C (1950) An iterative method for the solution of the eigenvalue problem of linear differential and integral operators. J Res Natl Bur Stand 45:255

    Google Scholar 

  45. Köppel H, Cederbaum LS, Domcke W (1982). J Chem Phys 77:2014

    Article  Google Scholar 

  46. Nauts A, Wyatt RE (1983). Phys Rev Lett 51:2238

    Article  CAS  Google Scholar 

  47. Huang S-W, Carrington T Jr (1999) A comparison of filter diagonalisation methods with the Lanczos method for calculating vibrational energy levels. Chem Phys Lett 312:311

    Article  CAS  Google Scholar 

  48. Davidson E (1975). J Comp Phys 17:87

    Article  Google Scholar 

  49. Ribeiro F, Iung C, Leforestier C (2002). Chem Phys Lett 362:199

    Article  CAS  Google Scholar 

  50. Feit MD, Fleck JA Jr, Steiger A (1982) Solution of the Schrödinger equation by a spectral method. J Comp Phys 47:412–433

    Article  CAS  Google Scholar 

  51. Kosloff R, Kosloff D (1983). J Chem Phys 79:1823

    Article  CAS  Google Scholar 

  52. Light JC, Hamilton IP, Lill JV (1985) Generalized discrete variable approximation in quantum mechanics. J Chem Phys 82:1400

    Article  CAS  Google Scholar 

  53. Corey GC, Lemoine D (1992) Pseudospectral method for solving the time-dependent Schrödinger equation in spherical coordinates. J Chem Phys 97:4115

    Article  CAS  Google Scholar 

  54. Bramley MJ, Tromp JW, Carrington T, Corey RC (1994). J Chem Phys 100:6175

    Article  CAS  Google Scholar 

  55. Leforestier C (1994). J Chem Phys 101:7357

    Article  CAS  Google Scholar 

  56. Leforestier C, Braly LB, Liu K, Matthew MJ, Saykally RJ (1997) Fully coupled six-dimensional calculations of the water dimer vibration-rotation-tunneling states with a split wigner pseudo spectral approach. J Chem Phys 106:8527

    Article  CAS  Google Scholar 

  57. Harris DO, Engerholm GG, Gwinn GW (1965) Calculation of matrix elements for one-dimensional quantum-mechanical problems and the application to anharmonic oscillators. J Chem Phys 43:1515

    Article  Google Scholar 

  58. Wei H, Carrington T (1992). J Chem Phys 97:3029

    Article  CAS  Google Scholar 

  59. Echave J, Clary DC (1994) Quantum theory of planar four-atom reactions. J Chem Phys 100:402

    Article  CAS  Google Scholar 

  60. Gatti F, Iung C, Leforestier C, Chapuisat X (1999) Fully coupled 6d calculations of the ammonia vibration-inversion-tunneling states with a split hamiltonian pseudospectral approach. J Chem Phys 111:7236–7243

    Article  CAS  Google Scholar 

  61. Leforestier C, Viel A, Gatti F, Munoz C, Iung C (2001) The Jacobi-Wilson method: a new approach to the description of polyatomic molecules. J Chem Phys 114:2099

    Article  CAS  Google Scholar 

  62. Yu H-G (2002). J Chem Phys 117:2030

    Article  CAS  Google Scholar 

  63. Wang X, Carrington T (2003). J Chem Phys 118:6946

    Article  CAS  Google Scholar 

  64. Yu H-G (2004). J Chem Phys 120:2270

    Article  PubMed  CAS  Google Scholar 

  65. McCoy AB, Sibert EL (1996) Canonical van vleck perturbation theory and its application to studies of higly vibrationally excited states of polyatomic molecules. In: Wyatt RE, Zhang JZH (eds) Dynamics of molecules and chemical reactions. Marcel Dekker, New York, pp 151–184

    Google Scholar 

  66. Ramesh SG, Sibert EL (2004). J Chem Phys 120:11011

    Article  PubMed  CAS  Google Scholar 

  67. Castillo-Chará J, Sibert EL (2003). J Chem Phys 119:11671

    Article  CAS  Google Scholar 

  68. Bloch C (1958). Nucl Phys 6:329

    Article  CAS  Google Scholar 

  69. Durand P, Malrieu JP (1987) Ab initio methods in quantum chemistry. In: Lawley KP (ed) Wiley, New York

  70. Wyatt RE, Iung C (1996) Quantum mechanical studies of molecular sepctra and dynamics. In: Wyatt RE, Zhang JZH (eds) Dynamics of molecules and chemical reactions. Marcel Dekker, New York, pp 59–122

    Google Scholar 

  71. Wyatt RE, Iung C, Leforestier C (1992) Quantum dynamics of overtone relaxation in benzene. I. 5 and 9 modes models for relaxation from CH(ν=3). J Chem Phys 97:3458

    Article  CAS  Google Scholar 

  72. Wyatt RE, Iung C, Leforestier C (1992) Quantum dynamics of overtone relaxation in benzene. II. 16 mode models for relaxation from CH(ν=3). J Chem Phys 97:3477

    Article  CAS  Google Scholar 

  73. Iung C, Leforestier C, Wyatt RE (1993). J Chem Phys 98:6722

    Article  CAS  Google Scholar 

  74. Wyatt RE, Iung C (1993) Quantum dynamics of overtone relaxation in benzene. V. CH(ν=3) dynamics computed with a new ab initio force field. J Chem Phys 98:6758

    Article  CAS  Google Scholar 

  75. Wyatt RE, Iung C(1994). J Chem Phys 101:3671

    Article  Google Scholar 

  76. Iung C, Wyatt RE (1993) Time-dependent quantum mechanical study of intramolecular vibrational energy redistribution in benzene. J Chem Phys 99:2261–2264

    Article  CAS  Google Scholar 

  77. Wyatt RE, Iung C, Leforestier C (1995). Acc Chem Res 28:423

    Article  CAS  Google Scholar 

  78. Maynard A, Wyatt RE, Iung C (1997) A quantum dynamical study of CH overtones in fluoroform. II. Eigenstate analysis of the v(CH) = 1 and v(CH) = 2 regions. J Chem Phys 106:9483

    Article  CAS  Google Scholar 

  79. Minehardt TJ, Wyatt RE (1998) Quasiclassical dynamics of benzene overtone relaxation on an ab initio force field. I. Energy flow and survival probabilities in planar benzene for CH(v = 2,3). J Chem Phys 109:8330

    Article  CAS  Google Scholar 

  80. Iung C, Leforestier C (1995). J Chem Phys 102:8453

    Article  Google Scholar 

  81. Leforestier C, Bisseling RH, Cerjan C, Feit MD, Friesner R, Guldenberg A, Hammerich A, Jolicard G, Karrlein W, Meyer H-D, Lipkin N, Roncero O, Kosloff R (1991) A comparison of different propagation schemes for the time dependent Schrödinger equation. J Comp Phys 94:59

    Article  Google Scholar 

  82. Worth GA, Beck MH, Jäckle A, Meyer H-D (2002) The MCTDH Package, Version 8.2, (2000). Meyer H-D, Version 8.3 (2002). See http://www.pci.uni-heidelberg.de/tc/usr/mctdh/

  83. Meyer H-D, Manthe U, Cederbaum LS (1990) The multi-configurational time-dependent Hartree approach. Chem Phys Lett 165:73–78

    Article  CAS  Google Scholar 

  84. Manthe U, Meyer H-D, Cederbaum LS (1992) Wave-packet dynamics within the multiconfiguration Hartree framework: General aspects and application to NOCl. J Chem Phys 97:3199–3213

    Article  CAS  Google Scholar 

  85. Beck MH, Jäckle A, Worth GA, Meyer H-D (2000) The multiconfiguration time-dependent Hartree method: a highly efficient algorithm for propagating wavepackets. Phys Rep 324:1–105

    Article  CAS  Google Scholar 

  86. Meyer H-D, Worth GA (2003) Quantum molecular dynamics: Propagating wavepackets and density operators using the multiconfiguration time-dependent Hartree (MCTDH) method. Theor Chem Acc 109:251–267

    Article  CAS  Google Scholar 

  87. Makri N, Miller WH (1987) Time-dependent self-consistent (TDSCF) approximation for a reaction coordinate coupled to a harmonic bath: single and multiconfiguration treatments. J Chem Phys 87:5781

    Article  CAS  Google Scholar 

  88. Kotler Z, Nitzan A, Kosloff R (1988) Multiconfiguration time-dependent self-consistent field approximation for curve crossing in presence of a bath. a fast fourier transform study. Chem Phys Lett 153:483

    Article  CAS  Google Scholar 

  89. Moiseyev N, Schatzberger R, Froelich P, Goscinski O (1985). J Chem Phys 83:3924

    Article  CAS  Google Scholar 

  90. Moiseyev N, Brown RC, Wyatt RE (1986). Chem Phys Lett 127:37

    Article  CAS  Google Scholar 

  91. Worth GA, Meyer H-D, Cederbaum LS (1996) The effect of a model environment on the S2 absorption spectrum of pyrazine: a wavepacket study treating all 24 vibrational modes. J Chem Phys 105:4412

    Article  CAS  Google Scholar 

  92. Worth GA, Meyer H-D, Cederbaum LS (1998) Relaxation of a system with a conical intersection coupled to a bath: a benchmark 24-dimensional wavepacket study treating the environment explicitly. J Chem Phys 109:3518–3529

    Article  CAS  Google Scholar 

  93. Raab A, Worth G, Meyer H-D, Cederbaum LS (1999) Molecular dynamics of pyrazine after excitation to the S2 electronic state using a realistic 24-mode model Hamiltonian. J Chem Phys 110:936–946

    Article  CAS  Google Scholar 

  94. Worth GA (2000) Accurate wave packet propagation for large molecular systems: The multi-configuration time-dependent Hartree (MCTDH) method with selected configurations. J Chem Phys 112:8322–8329

    Article  CAS  Google Scholar 

  95. Wang H, Thoss M (2003) Multilayer formulation of the multiconfiguration time-dependent Hartree theory. J Chem Phys 119:1289

    Article  CAS  Google Scholar 

  96. Nest M, Meyer H-D (2002) Benchmark calculations on high-dimensional Henon-Heiles potentials with the Multi-Configuration Time-Dependent Hartree (MCTDH) Method. J Chem Phys 117:10499–10505

    Article  CAS  Google Scholar 

  97. Hammerich AD, Manthe U, Kosloff R, Meyer H-D, Cederbaum LS (1994) Time-dependent photodissociation of methyl iodide with five active modes. J Chem Phys 101:5623

    Article  Google Scholar 

  98. Liu L, Fang J-Y, Guo H (1995) How many configurations are needed in a time-dependent Hartree treatment of the photodissociation of ICN?. J Chem Phys 102:2404

    Article  CAS  Google Scholar 

  99. Trin J, Monerville M, Pouilly B, Meyer H-D (2003) Photodissociation of the ArHBr complex investigated with the Multi–Configuration Time–Dependent Hartree (MCTDH) approach. J Chem Phys 118:600–609

    Article  CAS  Google Scholar 

  100. Pouilly B, Monnerville M, Gatti F, Meyer H-D (2005). J Chem Phys 122:1843–13

    Article  CAS  Google Scholar 

  101. Fang J-Y, Guo H (1994) Multiconfiguration time-dependent Hartree studies of the CH3I/MgO photodissociation dynamics. J Chem Phys 101:5831

    Article  CAS  Google Scholar 

  102. Jansen APJ, Burghgraef H (1995) MCTDH study of CH4 dissociation on Ni (111). Surf Sci 344:149

    Article  CAS  Google Scholar 

  103. Gromov EV, Trofimov AB, Vitkovskaya NM, Köppel H, Schirmer J, Meyer H-D, Cederbaum LS (2004) Theoretical study of excitations in furan: Spectra and molecular dynamics. J Chem Phys 121:4585

    Article  PubMed  CAS  Google Scholar 

  104. Fang J-Y, Guo H (1995) Multiconfiguration time-dependent Hartree studies of the Cl2Ne vibrational predissociation dynamics. J Chem Phys 102:1944

    Article  CAS  Google Scholar 

  105. Cattarius C, Worth GA, Meyer H-D, Cederbaum LS (2001) All mode dynamics at the conical intersection of an octa-atomic molecule: multi-configuration time-dependent Hartree (MCTDH) investigation on the butatriene cation. J Chem Phys 115:2088–2100

    Article  CAS  Google Scholar 

  106. Köppel H, Döscher M, Baldea I, Meyer H-D, Szalay PG (2002) Multistate vibronic interactions in the benzene radical cation. II. Quantum dynamical simulations. J Chem Phys 117:2657–2671

    Article  CAS  Google Scholar 

  107. Gerdts T, Manthe U (1997) The resonance Raman spectrum of CH3I: an application of the MCTDH approach. J Chem Phys 107:6584

    Article  CAS  Google Scholar 

  108. Jäckle A, Meyer H-D (1995) Reactive scattering using the multiconfiguration time-dependent Hartree approximation: General aspects and application to the collinear H+H2 → H2+H reaction. J Chem Phys 102:5605

    Article  Google Scholar 

  109. Sukiasyan S, Meyer H-D (2001) On the effect of initial rotation on reactivity. A multi-configuration time-dependent Hartree (MCTDH) wave-packet propagation study on the H+D2 and D+H2 reactive scattering systems. J Phys Chem A 105:2604–2611

    Google Scholar 

  110. Sukiasyan S, Meyer H-D (2002) Reaction cross section for the H+D20=1) → HD+D and D+H20=1) → DH+H systems. A multi-configuration time-dependent Hartree (MCTDH) wave-packet propagation study. J Chem Phys 116:10641–10647

    Google Scholar 

  111. Ehara M, Meyer H-D, Cederbaum LS (1996) Multiconfiguration time-dependent Hartree (MCTDH) study on the rotational and diffractive inelastic molecule-surface scattering. J Chem Phys 105:8865

    Article  CAS  Google Scholar 

  112. Heitz M-C, Meyer H-D (2001) Rotational and diffractive inelastic scattering of a diatom on a corrugated surface: A multiconfiguration time-dependent Hartree (MCTDH) study on N2/LiF(001). J Chem Phys 114:1382–1392

    Article  CAS  Google Scholar 

  113. van Harrevelt R, Manthe U (2004) Degeneracy in discrete variable representations: General considerations and applications to the multiconfigurational time-dependent hartree approach. J Chem Phys 121:5623

    Article  PubMed  CAS  Google Scholar 

  114. Milot R, Jansen APJ (2000) Energy distribution analysis of the wavepacket simulations of CH4 and CD4 scattering. Surf Sci 452:179

    Article  CAS  Google Scholar 

  115. Manthe U, Matzkies F (1996) Iterative diagonalization within the multi-configurational time-dependent Hartree approach: Calculation of vibrationally excited states and reaction rates. Chem Phys Lett 252:71

    Article  CAS  Google Scholar 

  116. Huarte-Larrañaga F, Manthe U (2002) Vibrational excitation in the transition state: The CH4+H → CH3+H2 reaction rate constant in an extended temperature interval. J Chem Phys 116:2863

    Article  CAS  Google Scholar 

  117. Huarte-Larrañaga F, Manthe U (2002) Accurate quantum dynamics of a combustion reaction: Thermal rate constants of O(3P) + CH4(X1A1) → OH(X2Π) + CH3(X2 A ''2 ). J Chem Phys 117:4635

    Article  CAS  Google Scholar 

  118. Lasorne B, Gatti F, Baloitcha E, Meyer H-D, Desouter-Lecomte M (2004) Cumulative isomerization probability studied by various transition state wave packet methods including the mctdh algorithm. benchmark: HCN → CNH. J Chem Phys 121:644–654

    Article  PubMed  CAS  Google Scholar 

  119. Worth G, Cederbaum L (2001) Electron transfer along a conjugated chain: the allene radical cation. Chem Phys Lett 348:477–482

    Article  CAS  Google Scholar 

  120. Rescigno TN, Isaacs WA, Orel AE, Meyer H-D, McCurdy CW (2002) Theoretical study of resonant excitation of CO2 by electron impact. Phys Rev A 65:32716

    Article  CAS  Google Scholar 

  121. Nauendorf H, Worth G, Meyer H-D, Kühn O (2002) Multi-configuration time-dependent Hartree dynamics on an ab initio reaction surface: Ultrafast laser -driven proton motion in Phthalic Acid Monomethylester. J Phys Chem 106:719–724

    Google Scholar 

  122. Beck MH, Meyer H-D (2001) Efficiently computing bound-state spectra: a hybrid approach of the multi-configuration time- dependent Hartree and filter-diagonalization methods. J Chem Phys 114:2036–2046

    Article  CAS  Google Scholar 

  123. Leforestier C, Wyatt RE (1983) Optical potential for laser induced dissociation. J Chem Phys 78:2334

    Article  CAS  Google Scholar 

  124. Riss UV, Meyer H-D (1993) Calculation of resonance energies and widths using the complex absorbing potential method. J Phys B 26:4503

    Article  CAS  Google Scholar 

  125. Riss UV, Meyer H-D (1995) Reflection-free complex absorbing potentials. J Phys B 28:1475

    Article  CAS  Google Scholar 

  126. Riss UV, Meyer H-D (1996) Investigation on the reflection and transmission properties of complex absorbing potentials. J Chem Phys 105:1409

    Article  CAS  Google Scholar 

  127. Moiseyev N (1998). Phys Rep 302:211

    Article  CAS  Google Scholar 

  128. Richter F, Hochlaf M, Rosmus P, Gatti F, Meyer H-D (2004) A study of mode–selective trans–cis isomerisation in HONO using ab initio methodology. J Chem Phys 120:1306–1317

    Article  PubMed  CAS  Google Scholar 

  129. Richter F, Rosmus P, Gatti F, Meyer H-D (2004) Time-dependent wavepacket study on trans–cis isomerisation of HONO. J Chem Phys 120:6072–6084

    Article  PubMed  CAS  Google Scholar 

  130. Gatti F, Meyer H-D (2004) Intramolecular vibrational energy redistribution in Toluene: a nine dimensional quantum mechanical study using the MCTDH algorithm. Chem Phys 304:3–15

    Article  CAS  Google Scholar 

  131. Iung C, Gatti F, Meyer H-D (2004) Intramolecular vibrational energy redistribution in the highly excited Fluoroform molecule: a quantum mechanical study using the MCTDH algorithm. J Chem Phys 120:6992–6998

    Article  PubMed  CAS  Google Scholar 

  132. Feynman RP (1948). Rev Mod Phys 20:367

    Article  Google Scholar 

  133. Feynman RP, Hibbs AR (1965) Quantum mechanics and path integrals. McGraw-Hill, New York

    Google Scholar 

  134. Feynman RP (1972) Statistical mechanics. W. A. Benjamin Inc., Reading Massachusetts

    Google Scholar 

  135. Makri N (1991). Computer Phys Comm 63:389

    Article  CAS  Google Scholar 

  136. Shao J, Makri N (2002). J Chem Phys 116:507

    Article  CAS  Google Scholar 

  137. Topaler M, Makri N (1992). J Chem Phys 97:9001

    Article  CAS  Google Scholar 

  138. Makarov DE, Makri N (1994). Chem Phys Lett 221:482

    Article  CAS  Google Scholar 

  139. Makri N, Makarov DE (1995). J Chem Phys 102:4611

    Article  CAS  Google Scholar 

  140. Makri N (1997) Path integral simulation of long-time dynamics in quantum dissipative systems. In: De Witt-Morette (eds) Functional integration: basics and applications. Plenum, New York, pp 193–211

    Google Scholar 

  141. Makri N (1998). J Phys Chem 102:4414

    CAS  Google Scholar 

  142. Nakayama A, Makri N (2003). J Chem Phys 119:8592

    Article  CAS  Google Scholar 

  143. Wright NJ, Makri N (2004). J Phys Chem B 108:6816

    Article  CAS  Google Scholar 

  144. Doll JD, Freeman DL, Beck TL (1990). Adv Chem Phys 78:61

    CAS  Google Scholar 

  145. Winterstetter M, Domcke W (1995). Chem Phys Lett 236:445

    Article  CAS  Google Scholar 

  146. Mielke SL, Truhlar DG (2003) A ‘path-by-path’ monotone extrapolation sequence for feynman path integral calculations of quantum mechanical free energy. Chem Phys Lett 378:317

    Article  CAS  Google Scholar 

  147. Lynch VA, Mielke SL, Truhlar DG (2004). J Chem Phys 121:5148

    Article  PubMed  CAS  Google Scholar 

  148. Jang S, Voth GA (1999). J Chem Phys 111:2357

    Article  CAS  Google Scholar 

  149. Cao J, Voth GA (1993). J Chem Phys 99:10070

    Article  CAS  Google Scholar 

  150. Cao J, Voth GA (1994). J Chem Phys 100:5106

    Article  CAS  Google Scholar 

  151. Cao J, Voth GA (1994). J Chem Phys 101:6168

    Article  CAS  Google Scholar 

  152. Lobaugh J, Voth GA (1996). J Chem Phys 104:2056

    Article  CAS  Google Scholar 

  153. Lobaugh J, Voth GA (1997). J Chem Phys 106:2400

    Article  CAS  Google Scholar 

  154. Sibert EL (1989). J Chem Phys 90:2672

    Article  CAS  Google Scholar 

  155. Podolsky B (1928). Phys Rev 32:812

    Article  Google Scholar 

  156. Nauts A, Chapuisat X (1985). Mol Phys 55:1287

    CAS  Google Scholar 

  157. Sutcliffe BT, Tennyson J (1986). Mol Phys 58:1053

    CAS  Google Scholar 

  158. Chapuisat X, Nauts A, Brunet J-P (1991). Mol Phys 72:1

    CAS  Google Scholar 

  159. Bramley MJ, Handy NC (1993). J Chem Phys 98:1378

    Article  CAS  Google Scholar 

  160. Wolfram S (1991) Mathematica, a system for doing mathematics by computer 2nd ed. Addison-Wesley, Reading, Mass, USA

    Google Scholar 

  161. Menou M, Chapuisat X (1993). J Mol Spec 300:300

    Article  Google Scholar 

  162. Lauvergnat D, Nauts A (2002). J Chem Phys 116:8560

    Article  CAS  Google Scholar 

  163. Chapuisat X, Iung C (1992). Phys Rev A 45:6217

    Article  PubMed  Google Scholar 

  164. Gatti F, Justum Y, Menou M, Nauts A, Chapuisat X (1997). Quantum-mechanical description of rigidly or adiabatically constrained molecular systems. J Mol Spec 373:403

    Article  Google Scholar 

  165. Gatti F, Iung C, Menou M, Justum Y, Nauts A, Chapuisat X (1998). Vector parametrization of the n-atom problem in quantum mechanics. I. Jacobi vectors. J Chem Phys 108:8821

    Article  CAS  Google Scholar 

  166. Gatti F, Iung C, Menou M, Chapuisat X (1998) Vector parametrization of the n-atom problem in quantum mechanics. II. Coupled-angular-momentun spectral representations for four atom systems. J Chem Phys 108:8821

    Article  CAS  Google Scholar 

  167. Gatti F (1999) Vector parametrization of the n-atom problem in quantum mechanics. iii separation into two sub-systems. J Chem Phys 111:7225

    Article  CAS  Google Scholar 

  168. Iung C, Gatti F, Viel A, Chapuisat X (1999) Vector parametrization of the n-atom problem in quantum mechanics. non-orthogonal coordinates. PCCP 1:3377

    CAS  Google Scholar 

  169. Mladenović, M (2000) Rovibrational hamiltonians for general polyatomic molecules in spherical polar parametrization. I. Orthogonal representations. J Chem Phys 112:1070–1081

    Article  Google Scholar 

  170. Gatti F, Munoz C, Iung C (2001) A general expression of the exact kinetic energy operator in polyspherical coordinates. J Chem Phys 114:8275

    CAS  Google Scholar 

  171. Gatti F, Nauts A (2003) Vector parametrization, partial angular momenta and unusual commutation relations in molecular physics. Chem Phys 295:167–174

    Article  CAS  Google Scholar 

  172. Gatti F, Iung C (2003) Exact and constrained kinetic energy operators in polyspherical coordinates. J Theor Comp Chem 2:507–522

    Article  CAS  Google Scholar 

  173. Iung C, Gatti F, Ortiz J-M, Meyer H-D (2004) in preparation

  174. Yu H-G, Muckerman JT (2002). J Mol Spec 214:11

    CAS  Google Scholar 

  175. Yu H-G (2002). J Chem Phys 117:8190

    Article  CAS  Google Scholar 

  176. Costa LS, Clary DC (2002). J Chem Phys 117:7512

    Article  CAS  Google Scholar 

  177. Goldfield EM, Gray SK (2002) A quantum dynamics study of H2+OH→H2O+H employing Wu-Schatz-Lendvay-Fang- Harding potential function and a four-atom implementation of the real wave packet method. J Chem Phys 117:1604

    CAS  Google Scholar 

  178. Lin SY, Guo H (2002). J Chem Phys 117:5183

    Article  CAS  Google Scholar 

  179. Frederick JH, Woywod C (1999). J Chem Phys 111:7255

    Article  CAS  Google Scholar 

  180. van der Avoird A, Wormer PES, Moszynski R (1994). Chem Rev 94:1931

    Article  Google Scholar 

  181. Gatti F (2003) Flexible monomer formulation for non-rigid systems. Chem Phys Lett 373:146–152

    Article  CAS  Google Scholar 

  182. Nauts A, Chapuisat X (1987). Chem Phys Lett 136:164

    CAS  Google Scholar 

  183. Hadder JE, Frederick JH (1992). J Chem Phys 97:3500

    Article  CAS  Google Scholar 

  184. Leforestier C, Gatti F, Fellers RS, Saykally RJ (2002). J Chem Phys 117:8710

    Article  CAS  Google Scholar 

  185. Thompson KC, Jordan MJT, Collins MA (1998) Polyatomic molecular potential energy surfaces by interpolation in local internal coordinates. J Chem Phys 108:8302–8316

    Article  CAS  Google Scholar 

  186. Crespos C, Collins MA, Pijper E, Kroes GJ (2003). Chem Phys Lett 376:566

    CAS  Google Scholar 

  187. Crespos C, Collins MA, Pijper E, Kroes GJ (2004). J Chem Phys 120:2392

    Article  PubMed  CAS  Google Scholar 

  188. Varandas AJC (2004) Modeling and interpolation of global multi-sheeted potential energy surfaces. In: Domcke W, Yarkony DR, Köppel H (eds) Conical Intersections. World Scientific, Singapore, p 205

    Google Scholar 

  189. Miller WH, Handy NC, Adams JE (1980). J Chem Phys 72:99

    Article  CAS  Google Scholar 

  190. Ruf BA, Miller WH (1988). J Chem Soc Faraday Trans 84:1523

    CAS  Google Scholar 

  191. Seidner L, Stock G, Domcke W (1994). Chem Phys Lett 228:665

    Article  CAS  Google Scholar 

  192. Stock G, Domcke W (2004) Femtosecond time-resolved spectroscopy of the dynamics at conical intersections. In: Stock G, Domcke W (eds) Conical Intersections. World Scientific, Singapore, pp 739–801

    Google Scholar 

  193. Manthe U (1996) A time-dependent discrete variable representation for (multi-configuration) Hartree methods. J Chem Phys 105:6989

    CAS  Google Scholar 

  194. van Harrevelt R, Manthe U (2004) Multiconfigurational time-dependent Hartree calculations for dissociative adsorption of H2 on Cu(100). J Chem Phys 121:3829

    PubMed  Google Scholar 

  195. Jäckle A, Meyer H-D (1996) Product representation of potential energy surfaces. J Chem Phys 104:7974

    Google Scholar 

  196. Jäckle A, Meyer H-D (1998) Product representation of potential energy surfaces II. J Chem Phys 109:3772

    Article  Google Scholar 

  197. Remacle F, Levine RD (1996) Spectra, rates, and intramolecular dynamics. In: Wyatt RE, Zhang JZH (eds) Dynamics of molecules and chemical reactions. Marcel Dekker, New York, pp 1–58

    Google Scholar 

  198. Zewail AH (2001) Femtochemistry. In: De Schryver, FC, De Feyter S, Schweitzer G (ed) Wiley-VCH, New York

  199. Brixner T, Damreuer NH, Niklaus P, Gerber G (2001). Nature 414:57

    Article  PubMed  CAS  Google Scholar 

  200. Levis RJ, Menkir GM, Rabitz H (2001). Science 292:709

    Article  PubMed  CAS  Google Scholar 

  201. McDonald PA, Shirk JS (1982) The infrared laser photoisomerization of HONO in solid N2 and Ar. J Chem Phys 77:2355

    CAS  Google Scholar 

  202. Shirk AE, Shirk JS (1983) Isomerization of HONO in solid nitrogen by selective vibrational excitation. Chem Phys Lett 97:549–552

    CAS  Google Scholar 

  203. Khriatchev L, Lundell J, Isoniemi E, Räsänen M (2000) HONO in solid Kr: Site-selective transcis isomerization with narrow-band infrared radiation. J Chem Phys 113:4265–4273

    Article  Google Scholar 

  204. Bernstein HJ, Herzberg G (1948). J Phys Chem 16:4765

    Google Scholar 

  205. Dubal HR, Quack M (1984). J Chem Phys 81:3779

    Article  Google Scholar 

  206. Segall J, Zare RN, Dubal HR, Lewerentz M, Quack M (1987). J Chem Phys 86:634

    CAS  Google Scholar 

  207. Quack M, Willeke M (1999). J Chem Phys 110:11958

    Article  CAS  Google Scholar 

  208. Gough KM, Henry BR (1984). J Phys Chem 88:1298

    Article  CAS  Google Scholar 

  209. Zhu C, Kjaergaard HG, Henry BR (1997). J Chem Phys 107:691

    CAS  Google Scholar 

  210. Léonard, Chambaud G, Rosmus P, Carter S, Handy NC (2001). PCCP 3:508

    Google Scholar 

  211. Lequéré F, Léonard C, Rosmus P, Meyer H-D, Gatti F (2004) (in preparation)

  212. Cooper AC, Clot E, Huffman JC, Streib WE, Maseras F, Eisenstein O, Caulton KG (1999). J Am Chem Soc 121:97

    CAS  Google Scholar 

  213. Clot E, Eisenstein O (2004) Agostic interactions from a computational perspective: one name, many interpretations. In: Kaltsoyannis N, McGrady JE (eds) Principles and applications of density functional theory in inorganic chemistry II. Springer, Berlin Heidelberg New York, pp 2–36

    Google Scholar 

  214. Torrent M, Solà M, Frenking G (2000). Chem Rev 100:439–493

    Article  PubMed  CAS  Google Scholar 

  215. Bittner M, Köppel H (2004). J Phys Chem A 108:11116

    CAS  Google Scholar 

  216. Garavelli M, Celani P, Bernardi F, Robb MR, Olivucci M (1997). J Am Chem Soc 119:6891

    CAS  Google Scholar 

  217. Garavelli M, Negri F, Olivucci M (1999). J Am Chem Soc 121:1023

    CAS  Google Scholar 

  218. Migani A, Robb MA, Olivucci M (2003). J Am Chem Soc 125:2804

    PubMed  CAS  Google Scholar 

  219. Worth GA, Cederbaum LS (2001) Mediation of ultrafast electron transfer in biological systems by conical intersections. Chem Phys Lett 338:219–223

    Article  CAS  Google Scholar 

  220. Vendrell O, Galabert R, Moreno M, Lluch JM (2004). Chem Phys Lett 396:202

    CAS  Google Scholar 

  221. Robb MA, Bernardi F, Olivucci M (1985). Pure Appl Chem 67:783

    Google Scholar 

  222. Bonacic-Koutecky V, Schoffel K, Michl J (1987). Theor Chem Acc 72:459

    Article  CAS  Google Scholar 

  223. Sobolewski AL, Woywod C, Domcke W (1993). J Chem Phys 98:5627

    CAS  Google Scholar 

  224. Migani A, Sinicropi A, Ferré N, Cembran A, Garavelli M (2004). Faraday Discuss 127:179

    Article  PubMed  CAS  Google Scholar 

  225. Migani A, Olivucci M (2004) Conical intersections and organic reaction mechanisms. In: Domcke W, Yarkony DR, Köppel H (eds) Conical Intersections. World Scientific, Singapore, p 271

    Google Scholar 

  226. Goldman N, Fellers RS, Leforestier C, Saykally RJ (2001). J Phys Chem A 105:515

    CAS  Google Scholar 

  227. Christiansen O (2004). J Chem Phys 120:2149

    PubMed  CAS  Google Scholar 

  228. Jasper AW, Truhlar DG (2005). J Chem Phys 122:044101

    Google Scholar 

  229. Burghardt I, Meyer H-D, Cederbaum LS (1999) Approaches to the approximate treatment of complex molecular systems by the multiconfiguration time-dependent Hartree method. J Chem Phys 111:2927–2939

    CAS  Google Scholar 

  230. Burghardt I, Nest M, Worth GA (2003). J Chem Phys 119:5364

    Article  CAS  Google Scholar 

  231. Worth G, Burghardt I (2003) Full quantum mechanical molecular dynamics using Gaussian wavepackets. Chem Phys Lett 368:502–508

    CAS  Google Scholar 

  232. Worth GA (2001) Quantum dynamics using pseudo-particle trajectories: a new approach based on the multi-configuration time-dependent Hartree method. J Chem Phys 114:1524–1532

    CAS  Google Scholar 

  233. Wang H, Thoss M, Miller W (2001) Systematic convergence in the dynamical hybrid approach for complex systems: a numerical exact methodology. J Chem Phys 115:2979

    CAS  Google Scholar 

  234. Thoss M, Wang H, Miller WH (2001) Self-consistent hybrid approach for complex systems: application to the spin-boson model with debye spectral density. J Chem Phys 115:2991

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Gatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gatti, F. Novel perspectives in quantum dynamics. Theor Chem Acc 116, 60–74 (2006). https://doi.org/10.1007/s00214-005-0023-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0023-y

Keywords

Navigation