Skip to main content
Log in

Density functional theory analysis of some triple-decker sandwich complexes of iron containing cyclo-P5 and cyclo-As5 ligands

  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Structure and bonding in triple-decker cationic complexes [(η5-Cp)Fe(μ,η:η5-E5) Fe(η5-Cp)]+ (1: E = CH, 2: E = P, 3: E = As) and [(η5-Cp)Fe(μ,η:η5-Cp)Fe(η5-E5)]+ (E = P, As) are examined by density functional theory (DFT) calculations at the B3LYP/6-31+G* level. These species exhibit the lowest energy when all the three ligands are eclipsed. In the complexes with bifacially coordinated cyclo-E5, the perfectly eclipsed D5 h sandwich structure a is found to be a potential minimum. The energy difference between the fully eclipsed and the staggered conformations b and c are within 1.0, 2.1, and 6.3 kcal/mol, respectively, for E = CH, P, and As. The isomeric species with monofacially coordinated cyclo-E5 (E =P, As), [(η5 -Cp)Fe(μ,η :η5-Cp)Fe(η5-E5)]+ are predicted to be about 30 and 60 kcal/mol higher in energy , respectively, for E = P and As. The calculations predict that the bifacially coordinated cyclo-E5 (E =P, As) undergoes significant ring expansion leading to ``loosening of bonds'' as observed experimentally. The consequent loss of aromaticity in the central cyclo-E5 indicates that significant π-electron density from the ring can be directed towards bonding with the iron centers on both sides. The diffuse nature of the π-orbitals of cyclo-P5 and cyclo-As5 can lead to better overlap with the iron d-orbitals and result in stronger bonding. This is reflected in the bond order values of 0.377 and 0.372 for the Fe-P and Fe-As bonds in 2a and 3a, respectively. The natural population analysis reveals that the Fe atom that is coordinated to a cyclo-E5 (E = P, As) possesses a negative charge of −0.23 to −0.38 units due to transfer of electron density from the inorganic ring to the metal center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scherer OJ (1987) Comments Inorg Chem 6:1

    Google Scholar 

  2. Scherer OJ (1990) Angew Chem Int Ed Engl 29:1104–1122

    Google Scholar 

  3. Baudler M, Glinka K (1993) Chem Rev 93:1623

  4. Scherer OJ (1999) Acc Chem Res 32:751

    Google Scholar 

  5. Whitemire KH (1998) Adv Organomet Chem 42:1

    Google Scholar 

  6. Dillon KB, Mathey F, Nixon JF (1998) Phosphorus: the carbon copy, Wiley, Chichester

  7. Scherer OJ, Schwalb J, Wolmershäuser G, Kaim W, Gross R (1986) Angew Chem Int Ed Engl 25:363

    Google Scholar 

  8. Scherer OJ, Schwalb J, Swarowsky H, Wolmershäuser G, Kaim W, Gross R (1988) Chem Ber 121:443–449

    Google Scholar 

  9. Scherer OJ, Sitzmann H, Wolmershäuser G (1985) Ang Chem Int Ed Engl 24:351

    Google Scholar 

  10. Scherer OJ, Brück T, Wolmershäuser G (1989) Chem Ber 122:2049–2054

  11. Scherer OJ, Wiedemann W, Wolmershäuser G (1989) J Organomet Chem 361: C 11

  12. Scherer OJ, Rink B, Heckmann G, Wolmershäuser G (1992) Chem Ber 125:1011

  13. Scherer OJ, Pfeiffer K, Wolmershäuser G (1992) Chem Ber 125:2367

  14. Scherer OJ, Schwarz G, Wolmershäuser G (1996) Z Anorg Allg Chem 622:951–957

    Google Scholar 

  15. Herberhold M, Frohmader G, Milius W (1996) J Organomet Chem 522:185–196

    Google Scholar 

  16. Kudinov AR, Loginov DA, Starikova ZA, Petrovskii PV, Corsini M, Zanello P (2002) Eur J Inorg Chem 2002:3018

  17. Hughes AK, Murphy VJ, O'Hare D (1994) J Chem Soc Chem Comm 1994:163

  18. Kudinov AR, Petrovskii PV, Rybinskaya MI (1999) Russ Chem Bull 48:1352,1362

    Google Scholar 

  19. Scherer OJ, Pfeiffer K, Wolmershäuser G (1992) Chem Ber 125:2367

  20. Reddy AC, Jemmis ED, Scherer OJ, Winter R, Heckmann G, Wolmershäuser G (1992) Organomet 11:3894

    Google Scholar 

  21. Von Hänisch C, Fenske D, Weigend F, Ahlrichs R (1997) Chem Eur J 3:1494

  22. Scherer OJ, Brück T, Wolmershäuser G (1988) Chem Ber 121:935–938

    Google Scholar 

  23. Scherer OJ, Blath C, Wolmershäuser G (1990) J Organomet Chem 387: C 21

  24. Baudler M, Etzbach (1991) Angew Chem Int Ed Engl 30:580

  25. Avent AG, Geoffrey F, Cloke N, Flower KR, Hitchcock PB, Nixon JF (1994) Angew Chem Int Ed Engl 33:2330

    Google Scholar 

  26. Hitchcock PB, Jones C, Nixon JF (1994) Angew Chem Int Ed Engl 33:463

    Google Scholar 

  27. Detzel M, Mohr T, Scherer OJ, Wolmershäuser G (1994) Ang Chem Int Ed Engl 33:1110–1112

    Google Scholar 

  28. Scherer OJ, Hilt T, Wolmershäuser G (1998) Organomet 17:4110

    Google Scholar 

  29. Scherer OJ, Wiegel S, Wolmershäuser G (1998) Chem Eur J 4:1910–1916

    Google Scholar 

  30. Rink B, Scherer OJ, Wolmershäuser G (1995) Chem Ber 128:71–4

    Google Scholar 

  31. Herber RH, Scherer OJ (2000) Inorg Chim Acta 308:116–120

    Google Scholar 

  32. Herber RH, Scherer OJ (2000) Eur J Inorg Chem 2000:2451–2453

  33. Urnezius E, Brennessel WW, Cramer CJ, Ellis JE, Schleyer PvR (2002) Science 295:832

    Google Scholar 

  34. Kesanli B, Fettinger J, Scott B, Eichhorn B (2004) Inorg Chem 43:3840–3846

    Google Scholar 

  35. Jemmis ED, Reddy AC (1990) Proc Indian Acad Sci (Chem Sci) 102:379–393 and the references cited therin

    Google Scholar 

  36. Di Vaira M, Sacconi L (1982) Angew Chem Int Ed Engl 21:330

    Google Scholar 

  37. Tremel W, Hoffmann R, Kertesz M (1989) J Am Chem Soc 111:2030

    Google Scholar 

  38. Jemmis ED, Reddy AC (1988) Organometallics 7:1561

    Google Scholar 

  39. Hohenberg P, Kohn W (1964) Phy Rev B 136:864

    Google Scholar 

  40. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University, New York

  41. Orendt AM, Facelli JC, Jiang YJ, Grant DM (1998) J Phys Chem A 102:7692

    Google Scholar 

  42. Matsuzawa N, Seto J, Dixon DA (1997) J Phys Chem A 101:9391

    Google Scholar 

  43. Mayor-López MJ, Weber J (1997) Chem Phys Lett 281:226

    Google Scholar 

  44. Maron L, Eisenstein O (2000) J Phys Chem A 104:7140

    Google Scholar 

  45. Kaupp M, Schleyer PvR, Dolg M, Stoll H (1992) J Am Chem Soc 114:8202

    Google Scholar 

  46. Xu Z-F, Xie Y, Feng W-L, Schaefer III HF (2003) J Phys Chem A 107:2716

  47. Frison G, Mathey F, Sevin A (2002) J Phys Chem A 106:5653

    Google Scholar 

  48. Frunzke J, Lein M, Frenking G (2002) Organometallics 21:3351

    Google Scholar 

  49. Lein M, Frunzke J, Frenking G (2003) Inorg Chem 42:2504

  50. Malar EJP (2004) Eur J Inorg Chem 2004:2723–2732

  51. Malar EJP (2003) Inorg Chem 42:3873

  52. Becke AD (1993) J Chem Phys 98:5648

    Google Scholar 

  53. Lee C, Yang W, Parr RG (1988) Phy Rev B 37:785

    Google Scholar 

  54. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox D J, Keith T, Al-Laham M A, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 Revision B04, Gaussian Inc, Pittsburgh

  55. Foresman JB, Frisch A (1996) Exploring chemistry with electronic srtucture methods; Gaussian, Inc: Pittsburgh

  56. Bauschlicher CW, Patridge H (1995) J Chem Phys 103:1788

    Google Scholar 

  57. a) Haaland A, Nilsson JE (1968) Acta Chem Scand 22:2653; b) Haaland A (1979) Acc Chem Res 12:415

  58. Wiberg KB (1968) Tetrahedron 24:1083

    Google Scholar 

  59. Gopinathan MS, Jug K (1983) Theor Chim Acta 63:511

    Google Scholar 

  60. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735

    Google Scholar 

  61. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

  62. Jug K (1983) J Org Chem 48:1344

    Google Scholar 

  63. Jug K, Köster A (1991) J Phys Org Chem 4:163

    Google Scholar 

  64. Baudler M, Akpapoglou S, Ouzounis D, Wasgestian F, Meinigke B, Budzikiewicz H, Munster H (1988) Angew Chem Int Ed Engl 27:280

    Google Scholar 

  65. Malar EJP(1992) J Org Chem 57:3694

    Google Scholar 

  66. Hamilton TP, Schaefer HF (1989) Ang Chem Int Ed Engl 28:485

    Google Scholar 

  67. Dransfeld A, Nyulaszi L, Schleyer PvR (1998) Inorg Chem 37:4413

  68. In the present analysis, the aromaticity index is taken as the lowest ring bond-order, in accordance with the ring-current definition of Jug [62,63]

  69. Waterman KC, Streitwieser A, Blom R, Faegri K Jr, Midtgaard T (1991) J Am Chem Soc 113:3230

    Google Scholar 

  70. Bohn RK, Haaland A (1966) J Organomet Chem 5:470

    Google Scholar 

  71. Drouin BJ, Cassak PA, Kukolich SG (1997) Inorg Chem 36:2868

  72. Jutzi P, Khol F, Hofmann P, Kruger C, Tsay YH (1980) Chem Ber 113:757

  73. Alexandratos S, Streitwieser A Jr, Schaefer HF III (1976) J Am Chem Soc 98:7959

    Google Scholar 

  74. Jespersen KK, Chandrashekhar J, Schleyer PvR (1980) J Org Chem 45:1608

    Google Scholar 

  75. Waterman KC, Streitwieser A Jr (1984) J Am Chem Soc 106:3138

    Google Scholar 

  76. Takusagawa F, Koetzle TF (1979) Acta Crystallogr B 35:1074

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Padma Malar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padma Malar, E. Density functional theory analysis of some triple-decker sandwich complexes of iron containing cyclo-P5 and cyclo-As5 ligands. Theor Chem Acc 114, 213–221 (2005). https://doi.org/10.1007/s00214-005-0663-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0663-y

Keywords

Navigation