Skip to main content
Log in

New perspectives in multireference perturbation theory: the n-electron valence state approach

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The n-electron valence state perturbation theory (NEVPT) is a form of multireference perturbation theory which is based on a zero order reference wavefunction of CAS-CI type (complete active space configuration interaction) and which is characterized by the utilization of correction functions (zero order wavefunctions external to the CAS) of multireference nature, obtained through the diagonalization of a suitable two-electron model Hamiltonian (Dyall’s Hamiltonian) in some well defined determinant spaces. A review of the NEVPT approach is presented, starting from the original second order state-specific formulation, going through the quasidegenerate multi-state extension and arriving at the recent implementations of the third order in the energy and of the internally contracted configuration interaction. The chief properties of NEVPT—size consistence and absence of intruder states—are analyzed. Finally, an application concerning the calculation of the vertical spectrum of the biologically important free base porphin molecule, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Møller C, Plesset MS (1934). Phys Rev 46:618

    Article  Google Scholar 

  2. Huron B, Malrieu JP, Rancurel P (1973). J Chem Phys 58:5745

    Article  CAS  Google Scholar 

  3. Andersson K, Malmqvist P, Roos BO, Sadlej AJ, Wolinski K (1990). J Phys Chem 94:5483

    Article  CAS  Google Scholar 

  4. Andersson K, Malmqvist P, Roos BO (1992). J Chem Phys 96:1218

    Article  CAS  Google Scholar 

  5. Dyall KG (1995). J Chem Phys 102:4909

    Article  CAS  Google Scholar 

  6. Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu JP (2001). J Chem Phys 114:10252

    Article  CAS  Google Scholar 

  7. McLean AD, Liu B (1973). J Chem Phys 58:1066

    Article  CAS  Google Scholar 

  8. McWeeny R (1989) Methods of molecular quantum mechanics. Academic, New York

    Google Scholar 

  9. Meyer W (1977) In: Schaefer HF III, (ed), Modern theoretical chemistry, vol. 3, Plenum, New York

  10. Siegbahn PEM (1980). Int J Quantum Chem 18:1229

    Article  CAS  Google Scholar 

  11. Angeli C, Cimiraglia R, Malrieu JP (2002). J Chem Phys 117:9138

    Article  CAS  Google Scholar 

  12. Angeli C, Cimiraglia R, Malrieu JP (2001). Chem Phys Lett 350:297

    Article  CAS  Google Scholar 

  13. Angeli C, Evangelisti S, Cimiraglia R, Maynau D (2002). J Chem Phys 117:10525

    Article  CAS  Google Scholar 

  14. Epstein PS (1925). Phys Rev 28:695

    Article  Google Scholar 

  15. Nesbet RK (1955). Proc R Soc London, Ser A 230:312

    Article  CAS  Google Scholar 

  16. Forsberg N, Malmqvist P (1997). Chem Phys Lett 274:196

    Article  CAS  Google Scholar 

  17. Bloch C (1958). Nucl Phys 6:329

    Article  CAS  Google Scholar 

  18. Brandow B (1967). Rev Mod Phys 39:771

    Article  CAS  Google Scholar 

  19. Lindgren I (1974). J Phys B 7:2441

    Article  CAS  Google Scholar 

  20. Daudey J, Malrieu JP (1982) In: Carbò R (ed), Current aspects of quantum chemistry 1981. Elsevier, Amsterdam

  21. Angeli C, Borini S, Cestari M, Cimiraglia R (2004). J Chem Phys 121:4043

    Article  CAS  Google Scholar 

  22. Zaitsevskii A, Malrieu JP (1995). Chem Phys Lett 223:597

    Article  Google Scholar 

  23. Werner HJ (1996). Mol Phys 89:645

    Article  CAS  Google Scholar 

  24. Angeli C, Cimiraglia R (2005). Comput Phys Comm 166:53

    Article  CAS  Google Scholar 

  25. Angeli C, Cimiraglia R (2005). Comput Phys Comm 171:63

    Article  CAS  Google Scholar 

  26. Fuchssteiner B, Oevel W. MuPAD, version 2.5.3 for Linux. Mupad research group, University of Paderborn, http://www.mupad.de

  27. Angeli C, Bories B, Cavallini A, Cimiraglia R (2006). J Chem Phys 124:054108

    Article  CAS  Google Scholar 

  28. Pastore M, Angeli C, Cimiraglia R (2006). Chem Phys Lett 422:522

    Article  CAS  Google Scholar 

  29. Angeli C, Calzado C, Cimiraglia R, Malrieu JP (2006). J Chem Phys 124:234109

    Article  CAS  Google Scholar 

  30. Pastore M, Angeli C, Cimiraglia R (2006). Chem Phys Lett 426:445

    Article  CAS  Google Scholar 

  31. Werner HJ, Knowles PJ (1988). J Chem Phys 89:5803

    Article  CAS  Google Scholar 

  32. DALTON, a molecular electronic structure program, Release 2.0 (2005), see http://www.kjemi.uio.no/software/dalton/ dalton.html

  33. Andersson M, Barysz A, Bernhardsson M, Blomberg RA, Cooper DL, Fülscher MP, de Graaf C, Hess BA, Karlström G, Lindh R, Malmqvist PÁ, Nakajima T, Neogrády P, Olsen J, Roos BO, Schimmelpfennig B, Schütz M, Seijo L, Serrano-Andrés L, Siegbahn PEM, Thorsteinsson JST, Veryazov V, Widmark PO (2002). Molcas5.4

  34. Angeli C, Borini S, Cimiraglia R (2004). Theor Chem Acc 111:352

    CAS  Google Scholar 

  35. Angeli C, Borini S, Ferrighi L, Cimiraglia R (2005). J Chem Phys 122:114304

    Article  CAS  Google Scholar 

  36. Angeli C, Borini S, Cavallini A, Cestari M, Cimiraglia R, Ferrighi L, Sparta M (2006). Int J Quantum Chem 106:686

    Article  CAS  Google Scholar 

  37. Havenith R, Taylor P, Angeli C, Cimiraglia R, Ruud K (2004). J Chem Phys 120:4619

    Article  CAS  Google Scholar 

  38. Dolphin D (1978–1979). The porphyrins, vol. 1–7, Academic, New York

    Google Scholar 

  39. Minaev B, Ågren H (2005). Chem Phys 315:215

    Article  CAS  Google Scholar 

  40. Hasegawa J, Takata K, Miyahara T, Neya S, Frisch MJ, Nakatsuji H (2005). J Phys Chem A 109:3187

    Article  CAS  Google Scholar 

  41. Nakatsuji H, Hasegawa JY, Hada M (1996). J Chem Phys 104:2321

    Article  CAS  Google Scholar 

  42. Tokita Y, Hasegawa JY, Nakatsuji H (1998). J Phys Chem A 102:1843

    Article  CAS  Google Scholar 

  43. Kitao O, Ushiyama H, Miura N (1999). J Chem Phys 110:2936

    Article  CAS  Google Scholar 

  44. Nooijen M, Bartlett RJ (1997). J Chem Phys 107:6812

    Article  CAS  Google Scholar 

  45. Gwaltney SR, Bartlett RJ (1998). J Chem Phys 108:6790

    Article  CAS  Google Scholar 

  46. Serrano-Andrés L, Marchán M, Rubio M, Roos BO (1998). Chem Phys Lett 295:195

    Article  Google Scholar 

  47. Celani P, Werner HJ (2000). J Chem Phys 112:5546

    Article  CAS  Google Scholar 

  48. Hashimoto T, Choe EK, Nakano H, Hirao K (1999). J Phys Chem A 103:1894

    Article  CAS  Google Scholar 

  49. Bauernschmitt R, Ahlrichs R (1996). Chem Phys Lett 256:454

    Article  CAS  Google Scholar 

  50. Stratmann R, Scuseria G, Frisch M (1998). J Chem Phys 109:8218

    Article  CAS  Google Scholar 

  51. van Gisbergen S, Rosa A, Ricciardi G, Baerends E (1999). J Chem Phys 111:2499

    Article  Google Scholar 

  52. Sundholm D (2000). Phys Chem Chem Phys 2:2275

    Article  CAS  Google Scholar 

  53. Rimington C, Mason SF, Kennard O (1958). Spectrochim Acta 12:65

    Article  CAS  Google Scholar 

  54. Anex BG, Umans RS (1964). J Am Chem Soc 86:5026

    Article  CAS  Google Scholar 

  55. Edwards L, Dolphin DH, Gouterman M, Adler AD (1971). J Mol Spectrosc 38:16

    Article  CAS  Google Scholar 

  56. Gouterman M (1959). J Chem Phys 30:1139

    Article  CAS  Google Scholar 

  57. Gouterman M, Wagnière G, Snyder LC (1963). J Mol Spectrosc 11:108

    Article  CAS  Google Scholar 

  58. Weiss C, Kobayashi H, Gouterman M (1965). J Mol Spectrosc 16:415

    Article  CAS  Google Scholar 

  59. Almöf J, Fischer TH, Gassman PG, Gosh A, Häser M (1993). J Phys Chem 97:10964

    Article  Google Scholar 

  60. Merchán M, Orti E, Roos BO (1994). Chem Phys Lett 221:136

    Article  Google Scholar 

  61. Hehre WJ, Ditchfield R, Pople JA (1972). J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  62. Merchán M, Orti E, Roos BO (1994). Chem Phys Lett 226:27

    Article  Google Scholar 

  63. Kim BF, Bohandy J (1978). J Mol Spectrosc 73:332

    Article  CAS  Google Scholar 

  64. Nagashima U, Takada T, Ohono K (1986). J Chem Phys 85:4524

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renzo Cimiraglia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angeli, C., Pastore, M. & Cimiraglia, R. New perspectives in multireference perturbation theory: the n-electron valence state approach. Theor Chem Account 117, 743–754 (2007). https://doi.org/10.1007/s00214-006-0207-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0207-0

Keywords

Navigation