Skip to main content
Log in

The effect of phenyl group on the electronic and phosphorescent properties of cyclometalated analogues of platinum(II) terpyridine complexes: a theoretical study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this work, we theoretically investigate the effect of phenyl group on the electronic and phosphorescent properties of cyclometalated platinum(II) complexes, thereby designing an efficient blue emitting material. Three platinum(II) complexes Pt(N^N^N)Cl (N^N^N = terpyridine), Pt(N^C^N)Cl (N^C^N = 1,3-di(2-pyridyl)-benzene) and Pt(N^N^C)Cl (N^N^C = 6-phenyl-2,2′-bipyridines) are chosen as the models. Their electronic and phosphorescent properties are investigated utilizing quantum theoretical calculations. The results reveal that the phenyl group significantly affects the molecular and electronic structures, charge distribution and phosphorescent properties. The coordination bond length trans to phenyl group is the longest among the same type of bonds owing to the trans influence of phenyl group. Moreover, the phenyl group largely restricts the geometry relaxation of cyclometalated ligand. The strong σ-donor ability of Pt–C bond makes more electrons center at Pt atom and the fragments trans to phenyl group. In comparison with Pt(N^N^N)Cl and Pt(N^N^C)Cl, the complex Pt(N^C^N)Cl has the smallest excited-state geometry relaxation and the biggest emission energy and spatial overlap between the transition orbitals in the emission process. As a result, Pt(N^C^N)Cl has the largest emission efficiency, which well agrees with the experimental observation. Based on these calculation results, a potentially efficient blue-emitting material is designed via replacing pyridine groups in Pt(N^C^N)Cl by 3-methylimidazolin-2-ylidene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Williams JAG, Develay S, Rochester DL, Murphy L (2009) Coord Chem Rev 252:2596–2611

    Google Scholar 

  2. Lu W, Mi BX, Chan MCW, Hui Z, Che CM, Zhu N, Lee ST (2004) J Am Chem Soc 126:4958. doi:10.1021/ja0317776

    Article  CAS  Google Scholar 

  3. Cocchi M, Fattori V, Virgili D, Sabatini S, Di Marco P, Maestri M, Kalinowski J (2004) Appl Phys Lett 84:1052. doi:10.1063/1.1646214

    Article  CAS  Google Scholar 

  4. Ma B, Djurovich PI, Garon S, Alleyne B, Thompson ME (2006) Adv Funct Mater 16:2438. doi:10.1002/adfm.200600614

    Article  CAS  Google Scholar 

  5. D’Andrade BW, Brooks J, Adamovich V, Thompson ME, Forrest SR (2002) Adv Mater 14:1032. doi:10.1002/1521-4095(20020805)14:15<1032::AID-ADMA1032>3.0.CO;2-6

    Article  Google Scholar 

  6. He Z, Wong WY, Yu X, Kwok HS, Lin Z (2006) Inorg Chem 45:10922. doi:10.1021/ic061566c

    Article  CAS  Google Scholar 

  7. D’Andrade BW, Forrest SR (2003) J Appl Phys 94:3101. doi:10.1063/1.1597942

    Article  Google Scholar 

  8. Yang XH, Wang ZX, Madakuni S, Li J, Jabbour GE (2008) Adv Mater 20:2405. doi:10.1002/adma.200702940

    Article  CAS  Google Scholar 

  9. Yip HK, Cheng LK, Cheung KK, Che CM (1993) J Chem Soc Daltan Trans 2933

  10. Wong KH, Chan MCW, Che CM (1999) Chem Eur J 5:2845. doi:10.1002/(SICI)1521-3765(19991001)5:10<2845::AID-CHEM2845>3.0.CO;2-G

    Article  CAS  Google Scholar 

  11. Brooks J, Babayan Y, Lamansky S, Djurovich PI, Tsyba I, Bau R, Thompson ME (2002) Inorg Chem 41:3055. doi:10.1021/ic0255508

    Article  CAS  Google Scholar 

  12. Aldridge TK, Stacy EM, McMillin DR (1994) Inorg Chem 33:722. doi:10.1021/ic00082a017

    Article  CAS  Google Scholar 

  13. Field JS, Haines RJ, Ledwaba LP, McGuire R Jr, Munro OQ, Low MR, McMillin DR (2007) Daltan Trans 192

  14. Lai SW, Chan MCW, Cheung TC, Peng SM, Che CM (1999) Inorg Chem 38:4046. doi:10.1021/ic990238s

    Article  CAS  Google Scholar 

  15. Mdleleni MM, Bridgewater JS, Watts RJ, Ford PC (1995) Inorg Chem 34:2334. doi:10.1021/ic00113a013

    Article  CAS  Google Scholar 

  16. Williams JAG, Beeby A, Davies ES, Weinstein JA, Wilson C (2003) Inorg Chem 42:8609. doi:10.1021/ic035083+

    Article  CAS  Google Scholar 

  17. Koch W, Holthausen MCA (2000) Chemist’s guide to density functional theory. Wiley-VCH, Weinheim

  18. Adamo C, di Matteo BV (1999) Adv Quantum Chem 36:4

    Google Scholar 

  19. Nguyen KA, Kennel J, Pachter R (2002) J Chem Phys 117:7128. doi:10.1063/1.1497640

    Article  CAS  Google Scholar 

  20. Stoyanov SR, Villegas JM, Rillema DP (2003) Inorg Chem 42:7852. doi:10.1021/ic030084n

    Article  CAS  Google Scholar 

  21. Becke AD (1993) J Chem Phys 98:5648. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  23. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200. doi:10.1016/0009-2614(89)87234-3

    Article  CAS  Google Scholar 

  24. Casida MK, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439. doi:10.1063/1.475855

    Article  CAS  Google Scholar 

  25. Stratmann RE, Scuseria GE (1998) J Chem Phys 109:8218. doi:10.1063/1.477483

    Article  CAS  Google Scholar 

  26. Pyykkö P, Mendizabal F (1998) Inorg Chem 37:3018. doi:10.1021/ic980121o

    Article  Google Scholar 

  27. Zhang RQ, Li QS (2008) Theor Chem Acc 119:437. doi:10.1007/s00214-007-0400-9

    Article  Google Scholar 

  28. Zhou X, Pan QJ, Xia BH, Li MX, Zhang HX, Tung AC (2007) J Phys Chem A 111:5465. doi:10.1021/jp064044r

    Article  CAS  Google Scholar 

  29. Zhou X, Zhang HX, Pan QJ, Xia BH, Tung AC (2005) J Phys Chem A 109:8809. doi:10.1021/jp0503359

    Article  CAS  Google Scholar 

  30. Frisch MJ et al (2004) Gaussian 03, revision C.02. Gaussian, Wallingford

  31. Cardenas DJ, Echavarren AM, de Arellano MCR (1999) Organometallics 18:3337. doi:10.1021/om990125g

    Article  CAS  Google Scholar 

  32. Hofmann A, Dahlenburg L, van Eldik R (2003) Inorg Chem 42:6528. doi:10.1021/ic034400+

    Article  CAS  Google Scholar 

  33. Liao Y, Shi LL, Feng JK, Yang L, Ren AM (2006) J Theor Comput Chem 5:401. doi:10.1142/S0219633606002349

    Article  CAS  Google Scholar 

  34. Kan YH, Yang GC, Yang SY, Zhang M, Lan YQ, Su ZM (2006) Chem Phys Lett 418:302. doi:10.1016/j.cplett.2005.11.005

    Article  CAS  Google Scholar 

  35. Cheung TC, Cheung KK, Peng SM, Che CM (1996) J Chem Soc Daltan Trans 1645

  36. Sotoyama W, Satoh T, Sato H, Matsuura A, Sawatari N (2005) J Phys Chem A 109:9760. doi:10.1021/jp053366c

    Article  CAS  Google Scholar 

  37. Turki M, Daniel C, Zalis S, Vlcek A, van Slageren J, Stufkens DJ (2001) J Am Chem Soc 123:11431. doi:10.1021/ja010782b

    Article  CAS  Google Scholar 

  38. Wilson JS, Chawdhury N, Al-Mandhary MRA, Younus M, Khan MS, Raithby PR, Kohler A, Friend RH (2001) J Am Chem Soc 123:9412. doi:10.1021/ja010986s

    Article  CAS  Google Scholar 

  39. Yersin H (ed) (2008) High efficient OLEDs with phosphorescent materials. Wiley-VCH, Weinheim. ISBN: 978-3-527-40594-7

  40. Sajoto T, Djurovich PI, Tamayo A, Yousufuddin M, Bau R, Thompson ME (2005) Inorg Chem 44:7992. doi:10.1021/ic051296i

    Article  CAS  Google Scholar 

  41. Thompson ME, Tamayo A, Djurovich P, Sajoto T, Forrest SR, Mackenzie PB, Walters R, Brooks J, Li X-C, Alleyne B, Tsai J-Y, Lin C, Ma B, Barone MS, Kwong R (2005) Luminescent compounds with carbene ligands. Pub. No.: WO/2005/113704. International Applicatio No. PCT US2005(017336)

  42. Kleinschmidt M, Tatchen J, Marian CM (2002) J Comput Chem 23:824. doi:10.1002/jcc.10064

    Article  CAS  Google Scholar 

  43. Burin AL, Ratner MA (1998) J Chem Phys 109:6092. doi:10.1063/1.477236

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Project Nos. 20373009, 20573016 and 20703008), Chang Jiang Scholars Program (2006), Program for Changjiang Scholars and Innovative Research Team in University (IRT0714), the Science Foundation for Young Teachers of NENU (No. 20081002, 20070304 and 20070309), and the Training Fund of NENU’s Scientific Innovation Project (NENU-STC07017). The Opening Project of Key Laboratory for Chemistry of Low-Dimensional Materials of Jiangsu Province (No. JSKC07034) is also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongmin Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, L.L., Li, T., Zhao, S.S. et al. The effect of phenyl group on the electronic and phosphorescent properties of cyclometalated analogues of platinum(II) terpyridine complexes: a theoretical study. Theor Chem Acc 124, 29–36 (2009). https://doi.org/10.1007/s00214-009-0573-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0573-5

Keywords

Navigation