Skip to main content
Log in

Nonlinear optical properties of DPO and DMPO: a theoretical and computational study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The gas phase properties of the Z- and E-isomers of 4-(p-N,N-dimethyl-aminophenylmethylene)-2-phenyl-5-oxazolone (DPO) and 4-(2,5-dimethoxyphenylmethylene)-2-phenyl-5-oxazolone (DMPO) are studied using traditional hybrid and long-range-corrected density functional theories (LC-DFT). Excellent agreement is found between the optimized molecular geometries and the experimental crystal structures. Our calculations predict both DPO and DMPO to have significant nonlinear optical (NLO) susceptibilities. These results are compared with data for the prototypical NLO chromophore p-nitroaniline, and the effect of the range separation parameter on LC-DFT hyperpolarizabilities is also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Marder SR, Sohn JE, Stucky GD (1991) Materials for non-linear optics: chemical perspectives, ACS symposium series 45. Washington, DC

    Book  Google Scholar 

  2. Boyd RW (1992) Nonlinear optics. Academic Press, New York

    Google Scholar 

  3. Marder SR (2006) Chem Commun 2:131

    Article  Google Scholar 

  4. Sekino H, Bartlett RJ (1993) J Chem Phys 98:3022

    Article  CAS  Google Scholar 

  5. Oudar JL, Chemla DS (1977) J Chem Phys 66:2664

    Article  CAS  Google Scholar 

  6. Hurst M et al (1989) Organic materials for nonlinear optics. In: Hann RA, Bloor D (eds) The Royal Society of Chemistry, London

  7. Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195

    Article  CAS  Google Scholar 

  8. Bishop DM, Kirtman B (1991) J Chem Phys 95:2646

    Article  CAS  Google Scholar 

  9. Brédas JL, Adant C, Tackx P, Persoons A, Pierce BM (1994) Chem Rev 94:243

    Article  Google Scholar 

  10. Suponitsky KY, Tafur S, Masunov AE (2008) J Chem Phys 129:044109

    Article  Google Scholar 

  11. Champagne B, Perpete EA, van Gisbergen SJA, Baerends EJ, Snijders JG, Soubra-Ghaoui C, Robins KA, Kirtman B (1998) J Chem Phys 109:10489

    Article  CAS  Google Scholar 

  12. Champagne B, Perpete EA, Jacquemin D, van Gisbergen SJA, Baerends EJ, Soubra-Ghaoui C, Robins KA, Kirtman B (2000) J Chem Phys 104:4755

    Article  CAS  Google Scholar 

  13. Loboda O, Zaleśny R, Avramopoulos A, Luis JM, Kirtman B, Tagmatarchis N, Reis H, Papadopoulos MG (2009) J Phys Chem A 113:1159

    Article  CAS  Google Scholar 

  14. van Faassen M, de Boeij R, van Leeuwen PL, Berger JA, Snijders JG (2003) J Chem Phys 118:1044

    Article  Google Scholar 

  15. Kirtman B, Lacivita V, Dovesi R, Reis HJ (2011) Chem Phys 135:154101

    Google Scholar 

  16. Jensen L, van Duijnen PT (2005) J Chem Phys 123:074307

    Article  Google Scholar 

  17. Lu S, Chiu C, Wang Y (2001) J Chem Phys 135:134104

    Article  Google Scholar 

  18. Jacquemin D, Perpète EA, Medved M, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2007) J Chem Phys 126:191108

    Article  Google Scholar 

  19. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:10478

    Article  CAS  Google Scholar 

  20. Peach MJG, Tellgren EI, Sałek P, Helgaker T, Tozer DJ (2007) J Phys Chem A 111:11930

    Article  CAS  Google Scholar 

  21. Jacquemin D, Adamo C (2011) J Chem Theory Comput 7: 369

    Article  CAS  Google Scholar 

  22. Savin A, Flad H (1995) Int J Quantum Chem 56:327

    Article  CAS  Google Scholar 

  23. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540

    Article  CAS  Google Scholar 

  24. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  25. Vydrov OA, Heyd J, Krukau AV, Scuseria GE (2006) J Chem Phys 125:074106

    Article  Google Scholar 

  26. Vydrov OA, Scuseria GE (2006) J Chem Phys 125:234109

    Article  Google Scholar 

  27. Jacquemin D, Perpète EA, Vydrov OA, Scuseria GE, Adamo C (2007) J Chem Phys 127:094102

    Article  Google Scholar 

  28. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) J Chem Phys 120:8425

    Article  CAS  Google Scholar 

  29. Kamiya M, Sekino H, Tsuneda T, Hirao K (2005) J Chem Phys 122:234111

    Article  Google Scholar 

  30. Jacquemin D, Perpète EA, Scuseria GE, Ciofini I, Adamo C (2008) J Chem Theory Comput 4:123

    Article  CAS  Google Scholar 

  31. Perpète EA, Jacquemin D, Adamo C, Scuseria GE (2008) Chem Phys Lett 456:101

    Article  Google Scholar 

  32. Jacquemin D, Perpète EA, Scuseria GE, Ciofini I, Adamo C (2008) Chem Phys Lett 465:226

    Article  CAS  Google Scholar 

  33. Song J, Watson MA, Sekino H, Hirao K (2008) J Chem Phys 129:024117

    Article  Google Scholar 

  34. Zaleśny R, Bulik IW, Bartkowiak W, Luis JM, Avramopoulos A, Papadopoulos MG, Krawczyk P (2010) J Chem Phys 133:244308

    Article  Google Scholar 

  35. de Wergifosse M, Champagne B (2011) J Chem Phys 134:074113

    Article  Google Scholar 

  36. Thanthiriwatte KS, Nalin de Silva KM (2002) Theochem 617:169

    Article  CAS  Google Scholar 

  37. Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian Inc., Wallingford, CT

  38. Grimme S (2011) WIREs Comput Mol Sci 1:211

    Article  CAS  Google Scholar 

  39. Goerigk L, Grimme S (2011) Phys Chem Chem Phys 13:6670

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB et al (2010) Gaussian development version, Revision H.21. Gaussian Inc., Wallingford, CT

  41. Asiri AM, El-Daly SA, Khan SA (2012) Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 95:679

    Article  CAS  Google Scholar 

  42. El-Daly SA, Asiri AM, Alamry KA, Hussein MA (2012) Chin J Chem 30:563

    Article  CAS  Google Scholar 

  43. Sevencek R, Aygun M, Alp S, Kazak C (2011) J Chem Crystallogr 41:1140

    Article  Google Scholar 

  44. Asiri AM, Ng SW (2009) Acta Crystallographica E65:o1746

    Article  CAS  Google Scholar 

  45. Garza AJ, Scuseria GE, Khan SB, Asiri AM (2013) Chem Phys Lett doi:10.1016/j.cplett.2013.04.081

  46. Chai J, Head-Gordon M (2008) Phys. Chem Chem Phys 10:6615

    Article  CAS  Google Scholar 

  47. Paschoal D, Dos Santos HF (2013) J Mol Model 19:2079

    Article  CAS  Google Scholar 

  48. Asiri AM, Khan SA, Al-Amoudi MS, Alamry KA (2012) Bull Korean Chem Soc 33(6):1900

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by King Abdulaziz University, under Grant No. (21-3-1432/HiCi). The authors, therefore, acknowledge technical and financial support of KAU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo E. Scuseria.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (680 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garza, A.J., Osman, O.I., Scuseria, G.E. et al. Nonlinear optical properties of DPO and DMPO: a theoretical and computational study. Theor Chem Acc 132, 1384 (2013). https://doi.org/10.1007/s00214-013-1384-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1384-2

Keywords

Navigation