Skip to main content
Log in

Performance of the RI and RIJCOSX approximations in the topological analysis of the electron density

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The performance of the Møller–Plesset (MP2) method in its resolution of the identity (RI-MP2), and the chain of spheres exchange (RIJCOSX-MP2) variants within the Quantum Theory of Atoms in Molecules (QTAIM) wavefunction analyses is examined. We have obtained QTAIM descriptors at bond critical points for a series of small molecules and water clusters of different sizes. We also considered integrated properties, like QTAIM atomic charges or localization and delocalization indices. The performance of RI methods with respect to the plain MP2 benchmark results is excellent, with mean deviations for all the properties considered below 0.15%. However, in systems where electron delocalization plays a more important role, we found differences up to 5% (e.g. \(\hbox {C}_6\hbox {H}_6\)) from a suitable reference. The account of RIJCOSX-HF results shows that the RIJCOSX approximation works better when electron correlation is included. Finally, a topological analysis of the electron density on the endofullerene complex \(\hbox {H}_2\hbox {O@C}_{70}\) is reported. Overall, herein we suggest the possibility to carry out the QTAIM topological analysis using correlated wavefunctions in large molecules and molecular clusters, thereby extending the applicability of this important methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bader RFW (1994) Atoms in molecules: a quantum theory (International series of monographs on chemistry). Oxford University Press, New York

    Google Scholar 

  2. Matta RJ, Boyd Chérif F (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, Weinheim

    Book  Google Scholar 

  3. Helgaker T, Jørgensen P, Olsen J (2004) Molecular electronic structure theory. Wiley, Sussex

    Google Scholar 

  4. Platts JA, Butina D, Abraham MH, Hersey A (1999) J Chem Inf Comput Sci 39:835–845

    Article  CAS  Google Scholar 

  5. Blanco MA, Martín Pendás A, Francisco E (2005) J Chem Theory Comput 1:1096–1109

    Article  CAS  Google Scholar 

  6. Bultinck P, Ponec R, Van Damme S (2005) J Phys Org Chem 18:706–718

    Article  CAS  Google Scholar 

  7. Farrugia LJ, Evans C, Tegel M (2006) J Phys Chem B 110:7952–7961 PMID: 16789785

    Article  CAS  Google Scholar 

  8. Corral I, Mó O, Yáñez M (2003) J Phys Chem A 107:1370–1376

    Article  CAS  Google Scholar 

  9. Cukrowski I, de Lange JH, Mitoraj M (2014) J Phys Chem A 118:623–637

    Article  CAS  Google Scholar 

  10. Cortés-Guzmán F, Bader RF (2005) Coord Chem Rev 249:633–662

    Article  Google Scholar 

  11. Galindo-Murillo R, Ruíz-Azuara L, Moreno-Esparza R, Cortés-Guzmán F (2012) Phys Chem Chem Phys 14:15539

    Article  CAS  Google Scholar 

  12. Lapointe SM, Farrag S, Bohórquez HJ, Boyd RJ (2009) J Phys Chem B 113:10957–10964

    Article  CAS  Google Scholar 

  13. Fuster F, Grabowski SJ (2011) J Phys Chem A 115:10078–10086

    Article  CAS  Google Scholar 

  14. Guevara-Vela JM, Romero-Montalvo E, Costales A, Pendas AM, Rocha-Rinza T (2016) Phys Chem Chem Phys ​18:26383–26390

  15. Romero-Montalvo E, Guevara-Vela JM, Costales A, Pendas AM, Rocha-Rinza T (2016) Phys Chem Chem Phys ​19:97–107

  16. Guevara-Vela JM, Chávez-Calvillo R, García-Revilla M, Hernández-Trujillo J, Christiansen O, Francisco E, Martín Pendás A, Rocha-Rinza T (2013) CEJ 19:14304–14315

    Article  CAS  Google Scholar 

  17. Guevara-Vela JM, Romero-Montalvo E, Mora-Gómez VA, Chávez-Calvillo R, García-Revilla M, Francisco E, Pendás Á Martín, Rocha-Rinza T (2016) Phys Chem Chem Phys ​18:19557–19566 

  18. Grabowski SJ (2012) J Phys Chem A 116:1838–1845

    Article  CAS  Google Scholar 

  19. Barquera-Lozada JE, Obenhuber A, Hauf C, Scherer W (2013) J Phys Chem A 117:4304–4315

    Article  CAS  Google Scholar 

  20. Terlan B, Akselrud L, Baranov AI, Borrmann H, Grin Y (2013) Z Anorg Allg Chem ​639:​2065–2070

  21. Gatti C (2005) Zeitschrift fur Kristallographie 220:399–457

    CAS  Google Scholar 

  22. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  23. Vahtras O, Almløf J, Feyereisen M (1993) Chem Phys Lett 213:514–518

    Article  CAS  Google Scholar 

  24. Neese F (2003) J Comput Chem 24:1740–1747

    Article  CAS  Google Scholar 

  25. Neese F, Wennmohs F, Hansen A, Becker U (2009) Chem Phys 356:98–109

    Article  CAS  Google Scholar 

  26. Weigend F, KoÌĹhn A, HaÌĹttig C (2002) J Chem Phys 116:3175

  27. Kossmann S, Neese F (2009) Chem Phys Lett 481:240–243

    Article  CAS  Google Scholar 

  28. Kossmann S, Neese F (2010) J Chem Theory Comput 6:2325–2338

    Article  CAS  Google Scholar 

  29. Zabula A, Rogachev A, Guzei I, West R (2013) Organomet 32:3760–3768

    Article  CAS  Google Scholar 

  30. Romero T, Orenes RA, Espinosa A, Tárraga A, Molina P (2011) IO 50:8214–8224

  31. Popov A, Schiemenz S (2011) J Phys Chem C 115:15257–15265

    Article  CAS  Google Scholar 

  32. Kuvychko IV, Shustova NB, Avdoshenko SM, Popov AA, Strauss SH, Boltalina OV (2011) Chem Eur J 17:8799–8802

    Article  CAS  Google Scholar 

  33. Ames W, Pantazis DA, Krewald V, Cox N, Messinger J, Lubitz W, Neese F (2011) J Am Chem Soc 133:19743–19757

    Article  CAS  Google Scholar 

  34. Ye S, Neese F (2011) Proc Nat Acad Sci 108:1228–1233

    Article  CAS  Google Scholar 

  35. Riplinger C, Neese F (2011) ChemPhysChem 12:3192–203

    Article  CAS  Google Scholar 

  36. Yamasaki H, Nakamura H (2012) Chem Phys Lett 536:129–135

    Article  CAS  Google Scholar 

  37. Müller A (1984) Phys Lett A 105:446

    Article  Google Scholar 

  38. García-Revilla M, Francisco E, Costales A, Martín Pendás A (2012) J Phys Chem A 116:1237–1250

    Article  Google Scholar 

  39. Rocha-Rinza T, Hernández-Trujillo J (2006) Chem Phys Lett 422:36–40

    Article  CAS  Google Scholar 

  40. Matta CF (2009) J Comput Chem 31:​1297–1311

  41. Segarra-Martí J, Merchán M, Roca-Sanjuán D (2012) J Chem Phys 136:244306

    Article  Google Scholar 

  42. Dunning TH (1007) J Chem Phys 1989:90

    Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision C.1. Gaussian Inc, Wallingford

    Google Scholar 

  44. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  45. Neese F (2012) WIREs Comput Mol Sci 2:73–78

    Article  CAS  Google Scholar 

  46. Keith TA (2012) AIMAll (Version 12.06.03), TK Gristmill Software, Overland Park KS, USA, 2012 (aim.tkgristmill.com)

  47. Cremer D, Kraka E (1984) Angewandte Chemie Int Ed Engl 23:627–628

    Article  Google Scholar 

  48. Espinosa E, Alkorta I, Elguero J, Molins E (2002) J Chem Phys 117:5529–5542

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge DGTIC/UNAM (project LANCAD-UNAM-DGTIC-250) for computer time, the Spanish government (grants CTQ-2015-65790-P, FC-15-GRUPIN14-049) and J.M.G.V. is also grateful to CONACyT/Mexico for financial support (grant 381483).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José Manuel Guevara-Vela or Ángel Martín Pendás.

Additional information

Published as part of the special collection of articles derived from the 10th Congress on Electronic Structure: Principles and Applications (ESPA-2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guevara-Vela, J.M., Rocha-Rinza, T. & Pendás, Á.M. Performance of the RI and RIJCOSX approximations in the topological analysis of the electron density. Theor Chem Acc 136, 57 (2017). https://doi.org/10.1007/s00214-017-2084-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2084-0

Keywords

Navigation