Skip to main content
Log in

Direct electrochemistry of DNA, guanine and adenine at a nanostructured film-modified electrode

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A nanostructured film electrode, a multi-wall carbon nanotubes (MWNT)-modified glassy carbon electrode (GCE), is described for the simultaneous determination of guanine and adenine. The properties of the MWNT-modified GCE were investigated by scanning electron microscopy (SEM) and cyclic voltammetry. The oxidation peak currents of guanine and adenine increased significantly at the MWNT-modified GCE in contrast to those at the bare GCE. The experimental parameters were optimized and a direct electrochemical method for the simultaneous determination of guanine and adenine was proposed. Using the MWNT-modified GCE, a sensitive and direct electrochemical technique for the measurement of native DNA was also developed, and the value of (G+C)/(A+T) of HCl-digested DNA was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

MWNT:

Multi-wall carbon nanotubes

G:

Guanine

A:

Adenine

GCE:

Glassy carbon electrode

DHP:

Dihexadecyl hydrogen phosphate

SEM:

Scanning electron microscope

References

  1. Paleček E (1960) Nature 188:656

    Google Scholar 

  2. Millan KM, Mikkelsen SR (1993) Anal Chem 65:2317

    CAS  PubMed  Google Scholar 

  3. Takenaka S, Yamashita K, Takagi M, Uto Y, Konda H (2000) Anal Chem 72:1334

    Article  CAS  Google Scholar 

  4. Yu CJ, Wan YJ, Yowanto H, Li J, Tao CL, James MD, Tan CL, Blackburn GF, Meade TJ (2001) J Am Chem Soc 123:11155

    Article  CAS  PubMed  Google Scholar 

  5. Erdem A, Kerman K, Meric B, Ozsoz M (2001) Electroanalysis 13:119

    Article  Google Scholar 

  6. Paleček E (1996) Electroanalysis 8:7

    CAS  Google Scholar 

  7. Singhal P, Kuhr WG (1997) Anal Chem 69:4828

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Cai XH, Wang JY, Jonsson C (1995) Anal Chem 67:4065

    CAS  Google Scholar 

  9. Wang J, Rivas G, Ozsoz M, Grabt DH, Cai XH, Parrado C (1997) Anal Chem 69:1457

    CAS  Google Scholar 

  10. De-los-Santos-Álvarez P, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P (2002) Anal Chem 74:3342

    Article  PubMed  Google Scholar 

  11. Jelen F, Yosypchuk B, Kourilová A, Novotný L, Paleček E (2002) Anal Chem 74:4788

    Article  CAS  PubMed  Google Scholar 

  12. Gilmatin MAT, Hart JP (1992) Analyst 117:1613

    Google Scholar 

  13. Oliveira Brett AM, Matysik FM (1997) Bioelectrochem Bioenerg 42:111

    CAS  Google Scholar 

  14. Zen JM, Chang MR, Ilangovan G (1999) Analyst 124:679

    Article  CAS  Google Scholar 

  15. Wang HS, Ju HX, Chen HY (2002) Anal Chim Acta 461:243

    Article  CAS  Google Scholar 

  16. Iijima S (1991) Nature 354:56

    CAS  Google Scholar 

  17. Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nature 384:147

    CAS  Google Scholar 

  18. Wong S, Joselevich E, Woolley A, Cheung C, Lieber C (1998) Nature 394:52

    Article  CAS  PubMed  Google Scholar 

  19. De Heer WA, Chatelain A, Ugarte D (1995) Science 270:1179

    Google Scholar 

  20. De Heer WA, Bonard JM, Fauth K (1997) Adv Mater 9:87

    Google Scholar 

  21. Baughman RH, Cui CC, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, Rossi DD, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Science 284:1340

    CAS  PubMed  Google Scholar 

  22. Tans S, Verschueren A, Dekker C (1998) Nature 393:49

    Article  CAS  Google Scholar 

  23. Che GL, Lakschmi BB, Fisher ER, Martin CR (1998) Nature 393:346

    Article  Google Scholar 

  24. Dresselhaus MS (1992) Nature 358:195

    Google Scholar 

  25. Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Science 286:1127

    Article  CAS  PubMed  Google Scholar 

  26. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho K, Dai HJ (2000) Science 287:622

    Article  CAS  PubMed  Google Scholar 

  27. Britto PJ, Santhanam KSV, Ajayan PM (1996) Bioelectrochem Bioenerg 41:121

    CAS  Google Scholar 

  28. Davis JJ, Coles RJ, Hill HAO (1997) J Electroanal Chem 440:279

    CAS  Google Scholar 

  29. Luo HX, Shi ZJ, Li NQ, Gu ZN, Zhuang QK (2001) Anal Chem 73:915

    Article  CAS  PubMed  Google Scholar 

  30. Wu FH, Zhao GC, Wei XW (2002) Electrochem Commun 4:690

    Article  CAS  Google Scholar 

  31. Musamech M, Wang J, Merkoci A, Lin YH (2002) Electrochem Commun 4:743

    Article  Google Scholar 

  32. Sun YY, Fei JJ, Wu KB, Hu SS (2003) Anal Bioanal Chem 475:544

    Google Scholar 

  33. Tsang SC, Chen YK, Harris PJF, Green MLH (1994) Nature 372:159

    Google Scholar 

  34. Hiura H, Ebbesen TW, Tanigaki K (1995) Adv Mater 7:275

    CAS  Google Scholar 

  35. Garrett RH, Crishan CM (1995) Biochemistry. Saunders College Publishing, Orlando

  36. Paleček E (1983) In: Milazzo G (ed) Topics in bioelectrochemistry and bioenergetics. Wiley, London, p 65

  37. Davidson N (1972) The biochemistry of the nucleic acids, 7th edn. Cox and Nyman, Norfolk, UK, p 129

Download references

Acknowledgements

The authors are grateful for financial support from the National Science Foundation of China (No.60171023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengshui Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, K., Fei, J., Bai, W. et al. Direct electrochemistry of DNA, guanine and adenine at a nanostructured film-modified electrode. Anal Bioanal Chem 376, 205–209 (2003). https://doi.org/10.1007/s00216-003-1887-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-1887-0

Keywords

Navigation