Skip to main content

Advertisement

Log in

Biosensor for the specific detection of a single viable B. anthracis spore

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A simple membrane strip-based biosensor for the detection of viable B. anthracis spores was developed and combined with a spore germination procedure as well as a nucleic acid amplification reaction to identify as little as one viable B. anthracis spore in less than 12 h. The biosensor is based on identification of a unique mRNA sequence from the anthrax toxin activator (atxA) gene encoded on the toxin plasmid, pXO1. Preliminary work relied on plasmid vectors in both E. coli and B. thuringiensis expressing the atxA gene. Once the principle was firmly established, the vaccine strain of B. anthracis was used. After inducing germination and outgrowth of spores of B. anthracis (Sterne strain), RNA was extracted from lysed cells, amplified using nucleic acid sequence-based amplification (NASBA), and rapidly identified by the biosensor. While the biosensor assay requires only 15-min assay time, the overall process takes12 h for the detection of as little as one viable B. anthracis spore, and is shortened significantly, if larger amounts of spores are present. The biosensor is based on an oligonucleotide sandwich-hybridization assay format. It uses a membrane flow-through system with an immobilized oligonucleotide probe that hybridizes with the target sequence. Signal amplification is provided when the target sequence hybridizes to a second oligonucleotide probe that has been coupled to dye-encapsulating liposomes. The dye in the liposomes then provides a signal that can be read visually or quantified with a hand-held reflectometer. The biosensor can detect as little as 1.5 fmol of target mRNA. Specificity analysis revealed no crossreactivity with closely related species such as B. cereus, B. megaterium, B. subtilis, B. thuringiensis etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A,B.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Peake J (2002) Transformation of the Army Medical Department. Army 26–32

  2. Helgason E, Okstad O, Caugant D, Johansen H, Fouet A, Mock M, Hegna I, Kolsto A (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis-one species on the basis of genetic evidence. Appl Environ Microbiol 66(6):2627–2630

    Article  CAS  PubMed  Google Scholar 

  3. Roloff H (1995) The taxonomic relationship between B. anthracis and the B. cereus group, investigated by DNA–DNA hybridization and DNA amplification fingerprinting (DAF). Salisbury Med Bull 87(suppl):38–39

    Google Scholar 

  4. Thorne C (1985) Genetics of Bacillus anthracis. In: Leive L (ed) Microbiology. American Society for Microbiology, Washington DC, pp 56–62

  5. Harrell L, Andersen G, Wilson K (1995) Genetic variability of Bacillus anthracis and related species. J Clin Microbiol 33:1847–1850

    CAS  PubMed  Google Scholar 

  6. Priest F (1993) Systematics and ecology of Bacillus. In: Sonenshein A (ed) Bacillus subtilis and other Gram-positive bacteria. American Society for Microbiology, Washington DC

  7. Thorne C (1993) Bacillus anthracis. In: Sonenshein A (ed) Bacillus subtilis and other Gram-positive bacteria. American Society for Microbiology, Washington DC, 8:113–124

  8. Turnbull P (1999) Definitive identification of Bacillus anthracis-a review. J Appl Microbiol 87:237–240

    CAS  PubMed  Google Scholar 

  9. Inglesby T, Henderson D, Bartlett J, Ascher M, Eitzen E, Friedlander A, Hauer J, McDade J, Osterholm M, O'Toole T, Parker G, Perl T, Russell P, Tonat K (1999) Anthrax as a biological weapon: medical and public health management. Working Group on Civilian Biodefense. JAMA 281(18):1735–1745

    PubMed  Google Scholar 

  10. Patra G, Sylvestre P, Ramisse V, Therasse J, Guesdon J (1996) Isolation of a specific chromosomic DNA sequence of Bacillus anthracis and its possible use in diagnosis. FEMS Immunol Med Microbiol 15(4):223–231

    CAS  PubMed  Google Scholar 

  11. Henderson I, Duggleby C, Turnbull P (1994) Differentiation of Bacillus anthracis from other Bacillus cereus group bacteria with the PCR. Int J Syst Bacteriol 44:99–105

    Google Scholar 

  12. Liang X, Yu D (1999) Identification of Bacillus anthracis strains in China. J Appl Microbiol 87:200–203

    CAS  PubMed  Google Scholar 

  13. Patra G, Vaissaire J, Weber-Levy M, Le Doujet C, Mock M (1998) Molecular characterization of Bacillus strains involved in outbreaks of anthrax in France in 1997. J Clin Microbiol 36(11):3412–3414

    CAS  PubMed  Google Scholar 

  14. Turnbull P (1991) Anthrax vaccines: past, present and future. Vaccine 9:533–539

    CAS  PubMed  Google Scholar 

  15. Phillips A, Martin K (1982) Evaluation of a microfluorometer in immunofluorescence assays of individual spores of Bacillus anthracis and Bacillus cereus. J Immunol Methods 49:271–282

    CAS  PubMed  Google Scholar 

  16. Phillips A, Martin K (1983) Quantitative immunofluorescence studies of the serology of Bacillus anthracis spores. Appl Environ Microbiol 46:1430–1432

    CAS  PubMed  Google Scholar 

  17. Phillips A et al (1984) Evaluation of immunoradiometric and ELISA versions of a microtitre plate assay for Bacillus anthracis spores. J Immunol Methods 70:75–81

    Article  Google Scholar 

  18. Stopa P (2000) The flow cytometry of Bacillus anthracis spores revisited. Cytometry 41:237–244

    CAS  PubMed  Google Scholar 

  19. Angelety L, Wright G (1971) Agar diffusion method for the differentiation of Bacillus anthracis. Appl Microbiol 21:157–159

    CAS  PubMed  Google Scholar 

  20. Henderson I, Dongzheng Y, Turnbull P (1995) Differentiation of Bacillus anthracis and other 'Bacillus cereus group' bacteria using IS 231-derived sequences. FEMS Microbiol Lett 128:113–118

    CAS  PubMed  Google Scholar 

  21. Ramisse V, Patra G, Garrigue H, Guesdon J, Mock M (1996) Identification and characterization of Bacillus anthracis by multiplex PCR analysis of sequences on plasmids pXO1 and pXO2 and chromosomal DNA. FEMS Microbiol Lett 145(1):9–16

    CAS  PubMed  Google Scholar 

  22. Redmond C, Pearce M, Manchee R, Berdal B (1998) Deadly relic of the Great War. Nature (London) 393(6687):747–748

  23. Carl M, Hawkins R, Coulson N, Lowe J, Robertson D, Nelson W, Titball R, Woody J (1992) Detection of spores of Bacillus anthracis using the polymerase chain reaction. J Infect Dis 165(6):1145–1148

    CAS  PubMed  Google Scholar 

  24. Johns M, Harrington L, Titball R, Leslie D (1994) Improved methods for the detection of Bacillus anthracis spores by the polymerase chain reaction. Lett Appl Microbiol 18(4):236–238

    CAS  Google Scholar 

  25. Lee M et al (1999) Fluorescent detection techniques for real-time multiplex strand specific detection of Bacillus anthracis using rapid PCR. J Appl Microbiol 87:218–223

    CAS  PubMed  Google Scholar 

  26. Qi Y, Patra G, Liang X, Williams L, Rose S, Redkar R, Del Vecchio V (2001) Utilization of the rpoB gene as a specific chromosomal marker for real-time PCR detection of Bacillus anthracis. Appl Environ Microbiol 67(8):3720–3727

    CAS  PubMed  Google Scholar 

  27. Castro A, Okinaka R (2000) Ultrasensitive, direct detection of a specific DNA sequence of Bacillus anthracis in solution. Analyst 125:9–11

    CAS  PubMed  Google Scholar 

  28. Jackson P, Hill K, Laker M, Ticknor L, Keim P (1999) Genetic comparison of Bacillus anthracis and its close relatives using amplified fragment length polymorphism and polymerase chain reaction analysis. J Appl Microbiol 87(2):263–269

    CAS  PubMed  Google Scholar 

  29. Keim P, Kalif A, Schupp J, Hill K, Travis S, Richmond K, Adair D, Hugh-Jones M, Kuske C, Jackson P (1997) Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers. J Bacteriol 179(3):818–824

    CAS  PubMed  Google Scholar 

  30. White D, Lytle C, Gan Y-D, Piceno Y, Wimpee M, Peacock A, Smith C (2002) Flash detection/identification of pathogens, bacterial spores and bioterrorism agent biomarkers from clinical and environmental matrices. J Microbiol Methods 48(2–3):139–147

  31. Beverly M, Voorhees K, Hadfield T (1999) Direct mass spectrometric analysis of Bacillus spores. Rapid Commun Mass Spectrom 13:2320–2326

    CAS  PubMed  Google Scholar 

  32. Lawrence D, Heitefuss S, Seifert H (1991) Differentiation of Bacillus anthracis from Bacillus cereus by gas chromatographic whole-cell fatty acid analysis. J Clin Microbiol 29:1508–1512

    CAS  PubMed  Google Scholar 

  33. Cogne R, Stares N, Jones M, Bowen J, Turnbull P, Boeufgras J (1996) Identification of Bacillus anthracis using the API 50CHB system. Salisbury Med Bull 87(suppl):34–35

    Google Scholar 

  34. Kiel J, Parker J, Grubbs T, Alls J (2000) Growth medium for the rapid isolation and identification of anthrax. Proceedings of SPIE-The International Society for Optical Engineering 4036 (Chemical and Biological Sensing), pp 92–102

  35. Baeumner A, Schlesinger N, Slutzki N, Romano J, Lee E, Montagna R (2002) A biosensor for dengue virus detection: sensitive, rapid and serotype specific. Anal Chem 74(6):1442–1448

    CAS  PubMed  Google Scholar 

  36. Baeumner A, Cohen R, Miksic V, Min J (2003) RNA biosensor for the rapid detection of viable Escherichia coli in drinking water. Biosens Bioelectron 8(4):405–419

    Article  Google Scholar 

  37. Hanna P (1999) Lethal toxin actions and their consequences. J Appl Microbiol 87:285–287

    CAS  PubMed  Google Scholar 

  38. Uchida I, Hornung J, Thorne C, Klimpel K, Leppla S (1993) Cloning and characterization of a gene whose product is a trans-activator of anthrax toxin synthesis. J Bacteriol 175:5329–5338

    CAS  PubMed  Google Scholar 

  39. Wheeler D, Chappey C, Lash A, Leipe D, Madden T, Schuler G, Tatusova T, Rapp B (2000) Database Resources Of The National Center For Biotechnology Information. Nucleic Acids Res 28:10–14

    CAS  PubMed  Google Scholar 

  40. Dai Z, Koehler T (1997) Regulation of anthrax toxin activator gene (atxA) expression in Bacillus anthracis: temperature, not CO2/bicarbonate, affects AtxA synthesis. Infect Immun 65:2576–2582

    CAS  PubMed  Google Scholar 

  41. Belton F, Strange R (1954) Studies on a protective antigen produced in vitro from Bacillus anthracis: medium and methods of production. Br J Exp Pathol 35:144–152

    CAS  Google Scholar 

  42. Boom R, Sol C, Salimans M, Jansen C, Wertheim van Dillen, P (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503

    CAS  PubMed  Google Scholar 

  43. Siebert S, Reeves S, Durst R (1993) Liposome immunomigration field assay device for Alachlor determination. Anal Chim Acta 282:297–305

    CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr Randy Worobo, who provided essential expertise and guidance in the field of Microbiology; and Wlodek Borejsza-Wysocki for helping with NASBA. Dr Patrick McDonough of the Cornell Veterinary Diagnostic Laboratory provided technical advice and access to the B. anthracis Sterne strain, without which this research would not have been possible. The authors also would like to thank Dr Steven Leppla of the National Institute of Dental and Craniofacial Research (NIDCR) in Bethesda, Maryland, for kindly providing several bacterial strains. Dr Theresa Koehler of the University of Texas Medical Center in Houston, Texas provided valuable help with B. anthracis growth media and atxA. Finally, we thank Innovative Biotechnology International, Inc. for funding parts of the research and the United States Army for providing Harriet Hartley the time and the funding to attend graduate school and carry out the presented research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje J. Baeumner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartley, H.A., Baeumner, A.J. Biosensor for the specific detection of a single viable B. anthracis spore. Anal Bioanal Chem 376, 319–327 (2003). https://doi.org/10.1007/s00216-003-1939-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-1939-5

Keywords

Navigation