Skip to main content
Log in

Ultrasonic agitation in microchannels

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper describes an acoustic method for inducing rotating vortex flows in microchannels. An ultrasonic crystal is used to create an acoustic standing wave field in the channel and thus induce a Rayleigh flow transverse to the laminar flow in the channel. Mixing in microchannels is strictly diffusion-limited because of the laminar flow, a transverse flow will greatly enhance mixing of the reactants. This is especially evident in chemical microsystems in which the chemical reaction is performed on a solid phase and only one reactant is actually diffusing. The method has been evaluated on two different systems, a mixing channel with two parallel flows and a porous silicon micro enzyme reactor for protein digestion. In both systems a significant increase of the mixing ratio is detected in a narrow band of frequency for the actuating ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brody JP, Yager P (1997) Sens Actuators A 58:13–18

    Article  Google Scholar 

  2. Hatch A et al (2001) Nat Biotechnol 19:461–465

    Article  CAS  PubMed  Google Scholar 

  3. Ismagilov RF et al (2000) Appl Phys Lett 76:2376–2378

    Article  CAS  Google Scholar 

  4. Hong CC, Choi JW, Ahn CH (2001) A novel in plane passive micromixer using coanda effect. In: μTAS 2001, Monterey, CA, USA. Kluwer, Dordrecht

  5. Bessoth FG, deMello AJ, Manz A (1999) Anal Commun 36:213–215

    Article  CAS  Google Scholar 

  6. Böhm S et al (2001) A rapid vortex micromixer for studying high speed chemical reactions. In: μTAS 2001, Monterey, CA, USA. Kluwer, Dordrecht

  7. Liu RH et al (2000) J Microelectromech Syst 9:190–197

    Article  Google Scholar 

  8. Oddy MH, Santiago JG, Mikkelsen JC (2001) Anal Chem 73:5822–5832

    Article  CAS  PubMed  Google Scholar 

  9. Lu LH, Ryu KS, Liu C (2001) A novel microstirrer and arrays for microfluidic mixing. In: μTAS 2001, Monterey, CA, USA. Kluwer, Dordrecht

  10. Zhu X, Kim ES (1998) Sens Actuators A 66:355–360

    Article  Google Scholar 

  11. Yang Z et al (2001) Sens Actuators A 93:266–272

    Article  Google Scholar 

  12. Ekstrom S et al (2000) Anal Chem 72:286–293

    Article  CAS  PubMed  Google Scholar 

  13. Bengtsson M, Ekstrom S, Marko-Varga G, Laurell T (2002) Talanta 341–353

  14. Rayleigh L (1883) Philos Trans R Soc London 1

  15. Sharpe JP et al (1989) Velocimetry Acustica 68:168–172

    Google Scholar 

  16. Vainshtein P, Fichman M, Gutfinger C (1995) Int J Heat Mass Transfer 38:1893–1899

    Article  Google Scholar 

  17. Yarin AL (2002) Fluid Dyn Res 31:79–102

    Article  Google Scholar 

  18. Pugin B (1987) Ultrasonics 25:49–55

    Article  CAS  Google Scholar 

  19. Gondrexon N et al (1998) Ultrason Sonochem 5:1–6

    Article  CAS  PubMed  Google Scholar 

  20. Mason TJ (2003) Ultrason Sonochem 10:175–179

    Article  CAS  PubMed  Google Scholar 

  21. Rathgeber A et al (2001) Planar microfluidics—liquid handling without walls arXiv:physics.acc-ph/0104079

  22. Strobl CJ et al (2002) Planar microfluidic processors, In: IEEE Ultrasonics Symp, 2002. IEEE

  23. Moroney RM, White RM, Howe RT (1991) Appl Phys Lett 59:774–776

    Article  Google Scholar 

  24. Drott J et al (1997) J Micromech Microeng 7:14–23

    Article  CAS  Google Scholar 

  25. Bengtsson M, Drott J, Laurell T (2000) Physica Status Solidi A 182:533–539

    Article  CAS  Google Scholar 

  26. Izuo S et al (2002) Sens Actuators A 97/98:720–724

  27. Weetall HH (1976) Covalent coupling methods for inorganic support materials. In Mosbach K (ed) Methods in Enzymology. Academic Press, NY, pp 134–148

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bengtsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bengtsson, M., Laurell, T. Ultrasonic agitation in microchannels. Anal Bioanal Chem 378, 1716–1721 (2004). https://doi.org/10.1007/s00216-003-2334-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2334-y

Keywords

Navigation