Skip to main content
Log in

Photoacoustic spectroscopy for process analysis

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Photoacoustic spectroscopy (PAS) is based on the absorption of electromagnetic radiation by analyte molecules. The absorbed energy is measured by detecting pressure fluctuations in the form of sound waves or shock pulses. In contrast to conventional absorption spectroscopy (such as UV/Vis spectroscopy), PAS allows the determination of absorption coefficients over several orders of magnitude, even in opaque and strongly scattering samples. Small absorption coefficients, such as those encountered during trace gas monitoring, can be detected with cells with relatively short pathlengths. Furthermore, PA techniques allow absorption spectra of solid samples (including powders, chips or large objects) to be determined, and they permit depth profiling of layered systems. These features mean that PAS can be used for on-line monitoring in technical processes without the need for sample preparation and to perform depth-resolved characterization of industrial products. This article gives an overview on PA excitation and detection schemes employed in analytical chemistry, and reviews applications of PAS in process analytical technology and characterization of industrial products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a–b
Fig. 6a–b
Fig. 7a–b
Fig. 8a–d
Fig. 9a–b
Fig. 10a–b
Fig. 11a–b
Fig. 12a–c

Similar content being viewed by others

References

  1. Bell AG (1880) Am J Sci 305–324

  2. Bell AG (1881) Phil Mag J Sci 11:510–528

    Google Scholar 

  3. Tyndall J (1881) Proc R Soc 31:307–317

    Google Scholar 

  4. Röntgen WC (1881) Ann Phys Chem 1:155–159

    Google Scholar 

  5. Viegerow ML (1938) Dokl Akad Nauk SSSR 19:687–688

    Google Scholar 

  6. Luft KF (1943) Z Tech Phys 5:97–104

    Google Scholar 

  7. Kerr EL, Atwood JG (1968) Appl Opt 7:915–921

    ADS  CAS  Google Scholar 

  8. Kreuzer LB (1971) J Appl Phys 42:2934–2943

    ADS  CAS  Google Scholar 

  9. Patel CKN, Burkhardt EG, Lambert CA (1974) Science 184:1173–1176

    ADS  CAS  Google Scholar 

  10. Rosencwaig A, Gersho A (1976) J Appl Phys 47:64–69

    ADS  Google Scholar 

  11. Patel CKN, Tam AC (1981) Rev Mod Phys 53:517–550

    ADS  CAS  Google Scholar 

  12. Kinney JB, Staley RH (1982) Ann Rev Mater Sci 12:295–321

    CAS  Google Scholar 

  13. Tam AC (1986) Rev Mod Phys 58:381–431

    ADS  CAS  Google Scholar 

  14. Rosencwaig A (1980) Photoacoustics and photoacoustic spectroscopy. Wiley, New York

    Google Scholar 

  15. McDonald FA, Wetsel GC (1978) J Appl Phys 49:2313–2322

    ADS  CAS  Google Scholar 

  16. McDonald FA (1981) J Appl Phys 52:1462–1463

    ADS  CAS  Google Scholar 

  17. Harren FJM, Cotti G, Oomens J, te Lintel Hekkert S (2000) In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 2203–2226

  18. Sigrist MW (1994) In: Sigrist MW (ed) Air monitoring by spectroscopic techniques. Wiley, New York, pp 163–238

  19. Miklós A, Hess P (2000) Anal Chem 72:30A–37A

    PubMed  Google Scholar 

  20. Dewey CF, Kamm RD, Hackett CE (1973) Appl Phys Lett 23:633–635

    CAS  Google Scholar 

  21. Kamm RD (1976) J Appl Phys 47:3550

    ADS  CAS  Google Scholar 

  22. Karbach A, Hess P (1985) J Chem Phys 83:1075–1084

    ADS  CAS  Google Scholar 

  23. Miklós A, Hess P, Bozoki Z (2001) Rev Sci Instrum 72:1937–1955

    ADS  Google Scholar 

  24. Schäfer S, Miklós A, Pusel A, Hess P (1998) Chem Phys Lett 285:235–239

    Google Scholar 

  25. Gusev VE, Karabutov AA (1993) Laser optoacoustics. AIP, New York

  26. Karabutov AA, Podymova NB, Letokhov VS (1995) J Mod Opt 42:7–11

    ADS  Google Scholar 

  27. Karabutov AA, Podymova NB, Lethokov VS (1995) Appl Opt 34:1484–1487

    ADS  CAS  Google Scholar 

  28. Karabutov AA, Podymova NB, Letokhov VS (1996) Appl Phys B 63:545–563

    CAS  Google Scholar 

  29. Burns DH (1994) Appl Spectrosc 48:12A–19A

    CAS  Google Scholar 

  30. Coufal H (1995) J Mol Struct 347:285–292

    CAS  Google Scholar 

  31. Karabutov AA, Savateeva EV, Podymova NB, Oraevsky AA (2000) J Appl Opt 87:2003–2014

    ADS  CAS  Google Scholar 

  32. Lohmann S, Ruff C, Schmitz C, Lubatschowski H, Ertmer W (1997) Lasers Med Sci 12:357–363

    Google Scholar 

  33. Oraevsky AA, Jacques SL, Tittel FK (1997) Appl Opt 36:402–415

    ADS  CAS  Google Scholar 

  34. Kopp C, Niessner R (1999) Appl Phys B 68:719–725

    ADS  CAS  Google Scholar 

  35. Beenen A, Spanner G, Niessner R (1997) Appl Spectrosc 51:51–57

    ADS  CAS  Google Scholar 

  36. Spicer JB, Wallace SL (1998) J Mater Sci 33:3899–3906

    CAS  Google Scholar 

  37. Vollmann J, Profunser DM, Dual J (2003) Rev Sci Instrum 74:851–853

    ADS  CAS  Google Scholar 

  38. Scruby CB, Smith RL, Moss BC (1986) NDT Int 19:307–131

    CAS  Google Scholar 

  39. Oberheide U, Christoph L, Krebs R, Welling H, Ertmer W, Lubatschowsky H (2002) Proc SPIE 4618:99–105

    ADS  Google Scholar 

  40. Oraevsky AA, Karabutov AA, Solomatin SV, Savateeva EV, Andreev VG, Gatalica Z, Singh H, Fleming RD (2001) SPIE 4256:6–15

    ADS  Google Scholar 

  41. Oraevsky AA, Savateeva EV, Solomatin SV, Karabutov AA, Andreev VG, Gatalica Z, Khamapirad T, Henrichs PM (2002) SPIE 4618:81–94

    ADS  Google Scholar 

  42. Reyman AM, Yakovlev IV, Kirillov AG, Lozhkarev VV (2001) Proc SPIE 4256:159–166

    ADS  Google Scholar 

  43. Selb J, Lévêque-Fort S, Pottier L, Boccara C (2001) Proc SPIE 4256:200–207

    ADS  Google Scholar 

  44. Wang X, Xu Y, Xu M, Yokoo S, Fry E, Wang LV (2002) Med Phys 29:2799–2805

    PubMed  Google Scholar 

  45. McClelland JF, Jones RW, Bajic SJ (2002) In: Chalmers JN, Griffiths PR (eds) Handbook of vibrational spectroscopy. Wiley, New York

  46. Dittmar RM, Chao JL, Palmer RA (1991) Appl Spectrosc 45:1104–1110

    ADS  CAS  Google Scholar 

  47. Michaelian KH (1989) Appl Spectrosc 43:185–190

    ADS  CAS  Google Scholar 

  48. Wang H, Phifer EB, Palmer RA (1998) Fresen J Anal Chem 362:34–40

    CAS  Google Scholar 

  49. Jackson W, Amer NM (1980) J Appl Phys 51:3343–3353

    ADS  CAS  Google Scholar 

  50. Nelson ET, Patel CKN (1981) Opt Lett 6:354–356

    ADS  CAS  Google Scholar 

  51. Wu L, Wei CC, Wu TS, Liu HC (1983) J Phys C 16:2813–2821

    ADS  CAS  Google Scholar 

  52. Ogi H, Kawasaki Y, Hirao M, Ledbetter H (2002) J Appl Phys 92:2451–2456

    ADS  CAS  Google Scholar 

  53. Sessler GM (1981) J Acoust Soc Am 70:1596–1608

    ADS  CAS  Google Scholar 

  54. Bilaniuk N (1997) Appl Acoust 50:35–63

    Google Scholar 

  55. Breguet J, Pellaux JP, Gisin N (1995) Sensor Actuat A 48:29–35

    Google Scholar 

  56. Kawabata Y, Yasunaga K, Imasaka T, Ishibashi N (1993) Anal Chem 65:3493–3496

    CAS  Google Scholar 

  57. Hand DP, Hodgson P, Carolan TA, Quan KM, Mackenzie HA, Jones JDC (1993) Opt Commun 104:1–6

    ADS  CAS  Google Scholar 

  58. Paltauf G, Schmidt-Kloiber H, Köstli KP, Frenz M (1999) Appl Phys Lett 75:1048–1050

    ADS  CAS  Google Scholar 

  59. Köstli KP, Frenz M, Weber HP, Paltauf G, Schmidt-Kloiber H (2000) J Appl Phys 88:1632–1637

    Google Scholar 

  60. Paltauf G, Schmidt-Kloiber H (2000) J Appl Phys 88(3):1624–1631

    ADS  CAS  Google Scholar 

  61. Dewhurst RJ, Shan Q (1999) Meas Sci Technol 10:R139–R168

    CAS  Google Scholar 

  62. Park SM, Diebold DJ (1987) Rev Sci Instrum 58:772–775

    ADS  CAS  Google Scholar 

  63. Chu JH, Bak YH, Kang BK, Kim U, Oum KW, Choi JG, Ko DS (1992) Opt Commun 89:135–139

    ADS  CAS  Google Scholar 

  64. Carp SA, Guerra A, Duque SQ, Venugopalana V (2004) Appl Phys Lett 85:5772–5774

    ADS  CAS  Google Scholar 

  65. Payne BP, Venugopalan V, Mikic BB, Nishioka NS (2003) J Biomed Opt 8:273–280

    PubMed  Google Scholar 

  66. Hoelen CGA, de Mul FFM, Pongers R, Dekker A (1998) Opt Lett 23:648–650

    ADS  CAS  Google Scholar 

  67. Emmony DC, Siegrist M, Kneubuehl FK (1976) Appl Phys Lett 9:547–549

    Google Scholar 

  68. Niederhauser JJ, Frauchiger D, Weber HP, Frenz M (2002) Appl Phys Lett 81:571–573

    ADS  CAS  Google Scholar 

  69. Niederhauser JJ, Jaeger M, Frenz M (2004) Appl Phys Lett 85:846–848

    ADS  CAS  Google Scholar 

  70. Sigrist MW (2003) Rev Sci Instrum 74:486–490

    ADS  CAS  Google Scholar 

  71. Urban W (1995) Infrared Phys Technol 36:465–473

    ADS  CAS  MathSciNet  Google Scholar 

  72. Bijnen FGC, Harren FJM, Hackstein JHP, Reuss J (1996) Appl Opt 35:5357–5368

    ADS  CAS  Google Scholar 

  73. Witteman WJ (1987) Springer Ser Opt Sci 53

  74. Kania P, Civiš S (2003) Spectrochim Acta A 59:3063–3074

    CAS  Google Scholar 

  75. Werle P, Slemr F, Maurer K, Kormann R, Mücke R, Jänker B (2002) Opt Lasers Eng 37:101–114

    Google Scholar 

  76. Faist J, Capasso F, Sivco DL, Sirtori C, Hutchinson AL, Cho AY (1994) Science 264:553

    ADS  Google Scholar 

  77. Beck M, Hofstetter D, Aellen T, Faist J, Oesterle U, Ilegems M, Gini E, Melchior H (2002) Science 295:301–305

    PubMed  ADS  CAS  Google Scholar 

  78. Nägele M, Hofstetter D, Faist J, Sigrist MW (2001) Anal Sci 17:s497–s499

    Google Scholar 

  79. Barbieri S, Pellaux JP, Studemann E, Rosset D (2002) Rev Sci Instrum 73:2458–2461

    ADS  CAS  Google Scholar 

  80. Schäfer S, Mashni M, Sneider J, Miklós A, Hess P, H Pitz H, Pleban KU, Ebert V (1998) Appl Phys B 66:511–516

    ADS  Google Scholar 

  81. Baxter GW, Paine MA, Austin BDW, Halloway CA, Haub JG, He Y, Milce AP, Nibler JF, Orr BJ (2000) Appl Phys B 71:651–663

    ADS  CAS  Google Scholar 

  82. Byer RL, Herbst RL (1977) Top Appl Phys 16:81–137

    CAS  Google Scholar 

  83. West GA (1983) Rev Sci Instrum 54:797–817

    ADS  CAS  Google Scholar 

  84. Loper GL, Sasaki GR, Stamps MA (1982) Appl Opt 21:1648–1653

    ADS  CAS  Google Scholar 

  85. Crane RA (1978) Appl Opt 17:2097–2102

    ADS  CAS  Google Scholar 

  86. Harren FJM, Bijnen FGC, Reuss J, Voesenek LACJ, Blom CWPM (1990) Appl Phys B 50:137–144

    ADS  Google Scholar 

  87. Harren FJM, Berkelmans R, Kuiper K, te Lintel Hekkert S, Scheepers P, Dekhuijzen R, Hollander P, Parker DH (1999) Appl Phys Lett 74:1761–1763

    ADS  CAS  Google Scholar 

  88. Koch KP, Lahmann W (1978) Appl Phys Lett 32:289–291

    ADS  CAS  Google Scholar 

  89. Fung KH, Lin HB (1986) Appl Opt 25:749–752

    ADS  CAS  Google Scholar 

  90. Naegele M, Sigrist MW (2000) Appl Phys B 70:895–901

    ADS  Google Scholar 

  91. Rey JM, Marinow D, Vogler DE, Sigrist MW (2005) Appl Phys B 80:261–266

    ADS  CAS  Google Scholar 

  92. Miklòs A, Lörincz A (1989) Appl Phys B 48:213–218

    ADS  Google Scholar 

  93. Zeninari V, Kapitanov VA, Courtois D, Ponomarev YN (1999) Infrared Phys Technol 40:1–23

    ADS  CAS  Google Scholar 

  94. Sazhin SG, Soborover EI, Tokarev SV (2003) Russ J Nondestruct 39:791–806

    CAS  Google Scholar 

  95. Schilt S, Thévenaz L, Niklés M, Emmenegger L, Hüglin C (2004) Spectrochim Acta A 60:3259–3268

    Google Scholar 

  96. Dean KR, Miller DA, Caprio RA, Petersen JS, Rich GK (1997) J Photopolym Sci Technol 10:425–444

    CAS  Google Scholar 

  97. Pushkarsky MB, Webber ME, Baghdassarian O, Narasimhan LR, Patel CKN (2002) Appl Phys B 75:391–396

    ADS  CAS  Google Scholar 

  98. Slezaka V, Santiagob G, Peuriot AL (2003) Opt Laser Eng 40:33–41

    Google Scholar 

  99. Schäfer S, Mashni M, Sneider J, Miklós A, Hess P, Pitz H, Pleban KU, Ebert V (1998) Appl Phys B 66:511–516

    ADS  Google Scholar 

  100. Radak BB, Petkovska MT, Trtica MS, Miljanic SS, Petkovska LT (2004) Anal Chim Acta 505:67–71

    CAS  Google Scholar 

  101. Nebiker PW, Pleisch RE (2002) Fire Safety J 37:429–436

    Google Scholar 

  102. Bernegger S, Sigrist MW (1990) Infrared Phys 30:375–429

    ADS  Google Scholar 

  103. Schramm DU, Sthel MS, da Silva MG, Carneiro LO, Junior AJS, Souza AP, Vargas H (2003) Infrared Phys Technol 44:263–269

    ADS  CAS  Google Scholar 

  104. Schramm DU, Sthel MS, da Silva MG, Carneiro LO, Souza AP, Vargas H (2003) Rev Sci Instrum 74:513–515

    ADS  CAS  Google Scholar 

  105. Sigrist MW (1995) Infrared Phys Technol 36:415–425

    ADS  CAS  Google Scholar 

  106. Beck HA, Niessner R, Haisch C (2003) Anal Bioanal Chem 375:1136–1143

    PubMed  CAS  Google Scholar 

  107. Messerer A, Rothe D, Pöschl U, Niessner R (2004) Top Catal 30/31:247–250

    Google Scholar 

  108. Rothe D, Zuther F, Jacob E, Messerer A, Pöschl U, Niessner R, Knab C, Mangold M (2004) SAE Technical Paper 2004-01-3046

  109. da Silva MG, Lima JAP, Sthel MS, Marín E, Gatts CEN, Cardoso SL, Campostrini E, Pereira MG, Campos AC, Massunaga MSO, Vargas H (2001) Anal Sci 17:S534–S537

    Google Scholar 

  110. da Silva MG, Santos EO, Sthel MS, Cardoso SL, Cavalli A, Monteiro AR, de Oliveira JG, Pereira MG, Vargas H (2003) Rev Sci Instrum 74:703–705

    ADS  CAS  Google Scholar 

  111. Moeckli MA, Hilbes C, Sigrist MW (1998) Appl Phys B 67:449–458

    ADS  CAS  Google Scholar 

  112. Nägele M, Sigrist MW (2000) Appl Phys B 70:895–901

    Google Scholar 

  113. Tilsner J, Wrage N, Lauf J, Gebauer G (2003) Biogeochemistry 63:229–247

    CAS  Google Scholar 

  114. van Groenigen JW, Kasper GJ, Velthof GL, van den Pol-van Dasselaar A, Kuikman PJ (2004) Plant Soil 263:101–111

    Google Scholar 

  115. Bicanic D, Persijn S, Taylor A, Cozijnsen J, van Veldhuyzen B, Lenssen G, Wegh H (2003) Rev Sci Instrm 74:690–693

    ADS  CAS  Google Scholar 

  116. Williams JR, Chambers BJ, Hartley AR, Ellis S, Guise HJ (2000) Soil Use Manage 16:237–243

    Article  Google Scholar 

  117. Monteny GJ, Groenestein CM, Hilhorst MA (2001) Nutr Cycl Agroecosys 60:123–132

    CAS  Google Scholar 

  118. Nicks B, Laitat M, Vanderheede M, Désiron A, Verhaeghe C, Canart B (2003) Anim Res 52:299–308

    CAS  Google Scholar 

  119. Bozóki Z, Szakáll M, Mohácsi A, Szabó G, Bor Z (2003) Sensor Actuat B 91:219–226

    Google Scholar 

  120. Liu W, Sun Z, Ranheimer M, Forsling W, Tang H (1999) Analyst 124:361–365

    CAS  Google Scholar 

  121. Beck HA, Bozóki Z, Niessner R (2000) Anal Chem 72:2171–2176

    PubMed  CAS  Google Scholar 

  122. Kim HG, Kim WT (1990) Phys Rev B 8541–8544

  123. Park S, Lee SK, Leet JY, Kim JE, Park HY, Park HL, Lim H, Kim WT (1992) J Phys Condens Matter 4:579–586

    ADS  CAS  Google Scholar 

  124. Pickett NL, Riddell FG, Foster DF, Cole-Hamilton DJ, Fryer JR (1997) J Matter Chem 7:1855–1866

    CAS  Google Scholar 

  125. Zakrzewski J, Firszt F, Łęgowski S, Męczyńska H, Marasek A, Pawlak M (2003) Rev Sci Instrum 74:572–574

    ADS  CAS  Google Scholar 

  126. Guskos N, Papadopoulos GJ, Likodimos V, Patapis S, Yarmis D, Przepiera A, Przepiera K, Majszcyk J, Typek J, Wabia M, Aidinis K, Drazek Z (2002) Mater Res Bull 37:1051–1061

    CAS  Google Scholar 

  127. Jáñes-Limón JM, Pérez-Robles JF, González-Hernández J, Vorobiev YV, Romano JA, Gandra FGC, da Silva EC (2000) J Sol-Gel Sci Techn 18:207–217

    Google Scholar 

  128. Walther HG, Christ A (2001) J Appl Phys 89:4124–4127

    ADS  CAS  Google Scholar 

  129. Schmatloch S, Schubert US (2004) Macromol Rapid Commun 25:69–76

    CAS  Google Scholar 

  130. Leite NF, Cella N, Vargas H, Mirando LCM (1987) J Appl Phys 61:3025–3027

    ADS  CAS  Google Scholar 

  131. Sanchez RR, Rieumont JB, Cardoso SL, da Silva MG, Sthel MS, Massunaga MSO, Gatts CN, Vargas H (1999) J Braz Chem Soc 10:97–103

    CAS  Google Scholar 

  132. Rintoul L, Panayiotou H, Kokot S, George G, Cash G, Frost R, Bui T, Fredericks P (1998) Analyst 123:571–577

    PubMed  CAS  Google Scholar 

  133. Boccaccio T, Bottino A, Capannelli G, Piaggio P (2002) J Membr Sci 210:315–329

    CAS  Google Scholar 

  134. Dias DT, Medina AN, Basso ML, Bento AC, Porto MF, Rubira AF (2002) J Phys D Appl Phys 35:3240–3248

    ADS  CAS  Google Scholar 

  135. Dittmar RM, Chao JL, Palmer RA (1991) Appl Spectrosc 45:1104–1110

    ADS  CAS  Google Scholar 

  136. Jiang EY, Palmer RA, Barr NE, Morosoff N (1997) Appl Spectrosc 51:1238–1244

    ADS  CAS  Google Scholar 

  137. McClelland JF, Jones RW, Luo S (2003) Rev Sci Instrum 74:285–290

    ADS  CAS  Google Scholar 

  138. Halttunen M, Tenhunen J, Saarinen T, Stenius P (1999) Vibr Spectrosc 19:261–269

    CAS  Google Scholar 

  139. Cimadevilla JLG, lvarez R, Pis JJ (2003) Vibr Spectrosc 31:133–141

    CAS  Google Scholar 

  140. Michaelian KH (2003) Rev Sci Instrum 74:659–662

    ADS  CAS  Google Scholar 

  141. Michaelian KH, Hall RH, Bulmer JT (2003) Spectrochim Acta A 59:2971–2984

    Google Scholar 

  142. Shen Y, Spiers S, MacKenzie HA (2001) Anal Sci 17:S221–S222

    CAS  Google Scholar 

  143. Shen Y, Lu Z, Spiers S, MacKenzie HA, Ashton HS, Hannigan J, Freeborn SS, Lindberg J (2000) Appl Opt 39:4007–4012

    Article  ADS  CAS  Google Scholar 

  144. Terzi M, Jovanović-Kurepa J, Slivka J (1998) J Phys D Appl Phys 31:1368–1374

    ADS  Google Scholar 

  145. MacKenzie HA, Christison GB, Hodgson P, Blanc D (1993) Sensor Actuat B 11:213–220

    Google Scholar 

  146. Hodgson P, Quan KM, MacKenzie HA, Freeborn S, Hannigan J, Johnston EM, Greig F, Binnie TD (1995) Sensor Actuat B 29:339–344

    Google Scholar 

  147. Freeborn SS, Hannigan J, Greig F, Suttie RA, MacKenzie HA (1998) Rev Sci Instrum 69:3948–3952

    ADS  CAS  Google Scholar 

  148. Hannigan J, Greig F, Freeborn SS, MacKenzie HA (1999) Meas Sci Technol 10:93–99

    ADS  CAS  Google Scholar 

  149. Bahners T, Schlosser U, Schollmeyer E (1998) Sensors Update 4:141–166

    CAS  Google Scholar 

  150. Schlosser U, Schollmeyer E, Schmid T, Helmbrecht C, Haisch C, Niessner R (2003) Melliand Textilber 9:759–761

    Google Scholar 

  151. Schmid T, Helmbrecht C, Haisch C, Panne U, Niessner R (2003) Anal Bioanal Chem 375:1130–1135

    PubMed  CAS  Google Scholar 

  152. Schmid T, Panne U, Haisch C, Hausner M, Niessner R (2002) Environ Sci Technol 36:4135–4141

    PubMed  CAS  Google Scholar 

  153. Schmid T, Helmbrecht C, Panne U, Haisch C, Niessner R (2003) Anal Bioanal Chem 375:1124–1129

    PubMed  CAS  Google Scholar 

  154. Schmid T, Panne U, Adams J, Niessner R (2004) Water Res 38:1189–1196

    PubMed  CAS  Google Scholar 

  155. Lafond EF, Brodeur PH, Gerhardstein JP, Habeger CC, Telschow KL (2002) Ultrasonics 40:1019–1023

    PubMed  Google Scholar 

  156. Drake TE (2003) International Patent WO 03/095942 A2

  157. Rogers JA, Nelson KA (1996) Physica B 219/220:562–564

    ADS  Google Scholar 

  158. MTEC Photoacoustics Inc. (1998) Homepage. MTEC Photoacoustics Inc., Ames, IO. See http://www.mtecpas.com, accessed May 2005

  159. Innova (2005) Homepage. Innova AirTech Instruments A/S, Ballerup, Denmark. See http://www.innova.dk, accessed May 2005

  160. AVL (2005) Homepage. AVL List GmbH, Graz, Austria. See http://www.avl.com, accessed May 2005

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schmid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, T. Photoacoustic spectroscopy for process analysis. Anal Bioanal Chem 384, 1071–1086 (2006). https://doi.org/10.1007/s00216-005-3281-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3281-6

Keywords

Navigation