Skip to main content
Log in

Integrated microfluidic device with an electroplated palladium decoupler for more sensitive amperometric detection of the 8-hydroxy-deoxyguanosine (8-OH-dG) DNA adduct

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

8-Hydroxy-deoxyguanosine (8-OH-dG) DNA adduct is one of the most frequently used biomarkers reporting on the oxidative stress that leads to DNA damage. More sensitive and reliable microfluidic devices are needed for the detection of these biomarkers of interest. We have developed a capillary electrophoresis (CE)-based microfluidic device with an electroplated palladium decoupler that provides significantly improved detection limit, separation efficiency, and resolving power. The poly(dimethylsiloxane) (PDMS)/glass hybrid device has fully integrated gold microelectrodes covered in situ with palladium nanoparticles using an electroplating technique. The performance and coverage of the electrodes electroplated with palladium particles were evaluated electrochemically and via scanning electron microscope (SEM) imaging, respectively. The performance of the device was tested and evaluated with different buffer systems, pH values, and electric field strengths. The results showed that this device has significantly improved resolving power, even at separation electric field strengths as high as 600 V cm−1. The detection limit for the 8-OH-dG adduct is about 20 attomoles; the concentration limit is on the order of 100 nM (S/N = 3). A linear response is reported for both 8-OH-dG and dG in the range from 100 nM to 150 μM (≈100 pA μM−1) with separation efficiencies of approximately 120,000–170,000 plates m−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

amperometric detection

CE:

capillary electrophoresis

dG:

deoxyguanosine

8-OH-dG:

8-hydroxy-deoxyguanosine

ED:

electrochemical detection

EG:

electrophoretic ground

LOD:

limit of detection

PDMS:

poly(dimethylsiloxane)

WE:

working electrode

References

  1. Floyd R, Watsonand J, Wong P, Altmiller D, Rickard R (1986) Free Radic Res Commun 1:163–172

    CAS  Google Scholar 

  2. Cavalieri E, Chakravarti D, Guttenplan J, Hart E, Ingle J, Jankowiak R, Muti P, Rogan E, Russo J, Santen R, Sutter T (2006) Biochim Biophys Acta 1766(1):63–78

    CAS  Google Scholar 

  3. Shigenaga M, Gimeno C, Ames B (1989) Proc Natl Acad Sci 86:9697–9701

    Article  CAS  Google Scholar 

  4. Markushin Y, Gaikwad N, Zhang H, Kapke P, Rogan EG, Cavalieri EL, Trock BJ, Pavlovich C, Jankowiak R (2006) Prostate 66(14):1565–1571

    Article  CAS  Google Scholar 

  5. Loft S, Vistisen K, Ewertz M, Tjonneland A, Overvad K, Poulsen H (1992) Carcinogenesis 13:2241–2247

    Article  CAS  Google Scholar 

  6. Wu L, Chiou C, Chang P, Wu J (2004) Clin Chim Acta 339:1–9

    Article  CAS  Google Scholar 

  7. Lin H, Jenner A, Ong C, Huang S, Whiteman M, Halliwell B (2004) Biochem 380:541–584

    Article  CAS  Google Scholar 

  8. Yin B, Whyatt RM, Perera FP, Randall MC, Cooper TB, Santella RM (1995) Free Radic Biol Med 18:1023–1032

    Article  CAS  Google Scholar 

  9. Adachi S, Zeisig M, Moller L (1995) Carcinogenesis 16:253–258

    Article  CAS  Google Scholar 

  10. Hofer T, Moller L (2002) Chem Res Toxicol 15:426–432

    Article  CAS  Google Scholar 

  11. Helbock H, Beckman K, Shigenaga M, Walter P, Woodall A, Yeo H, Ames B (1998) Proc Natl Acad Sci 95:288–293

    Article  CAS  Google Scholar 

  12. Weiss D, Lunte CE (2000) Electrophoresis 21:2080–2085

    Article  CAS  Google Scholar 

  13. Mei S, Yao Q, Cai L, Xing J, Xu G, Wu C (2003) Electrophoresis 24:1411–1415

    Article  CAS  Google Scholar 

  14. Kok WT, Sahin Y (1993) Anal Chem 65:2497–2501

    Article  CAS  Google Scholar 

  15. Zhang SS, Yuan ZB, Liu HX, Zou H, Wu YJJ (2000) Chromatogr A 872:259–268

    Article  CAS  Google Scholar 

  16. Gordillo JM, Perez-Saborid M, Ganan-Calvo AM (2001) J Fluid Mech 448:23–51

    Article  CAS  Google Scholar 

  17. Manz A, Grabner N, Widmer HM (1990) Sens Actuators B Chem 1:244–248

    Article  Google Scholar 

  18. Manz A, Harrison DJ, Rettinger, Verpoorte E, Ludi H, Widmer HM (1990) Transducers. Digest of Technical Papers, IEEE 91 CH2817; IEEE: New York, 91:939–941

  19. Harrison DJ, Manz A, Fan Z, Lüdi H, Widmer HM (1992) Anal Chem 64:1926–1932

    Article  CAS  Google Scholar 

  20. Lacher NA, Garrison KE, Martin RS, Lunte SM (2001) Electrophoresis 22:2526–2536

    Article  CAS  Google Scholar 

  21. Burns MA, Johnson BN, Brahmasandra SN, Handique K, Burke DT (1998) Science 282:484–487

    Article  CAS  Google Scholar 

  22. Schwarz M, Hauser PC (2003) Anal Chem 75:4691–4695

    Article  CAS  Google Scholar 

  23. Keynton RS, Roussel TJ, Crain MM, Jackson DJ, Franco DB, Naber JF, Walsh KM, Baldwin RP (2004) Anal Chim Acta 507:95–105

    Article  CAS  Google Scholar 

  24. Blasco AJ, Barrigas I, Gonzalez MC, Escarpa A (2005) Electrophoresis 26:4664–4673

    Article  CAS  Google Scholar 

  25. Zhang QL, Xu JJ, Lian HZ, Li XY, Chen HY (2000) Anal Bioanal Chem 384:265–270

    Article  CAS  Google Scholar 

  26. Dawoud AA, Kawaguchi T, Markushin Y, Porter MD, Jankowiak R (2006) Sens Actuators B Chem 120(1):42–50

    Article  CAS  Google Scholar 

  27. Vickers A, Henry CS (2005) Electrophoresis 26:4641–4647

    Article  CAS  Google Scholar 

  28. Kovarik ML, Li MW, Martin SR (2005) Electrophoresis 26:202–210

    Article  CAS  Google Scholar 

  29. Lacher NA, Lunte SM, Martin RS (2004) Anal Chem 76:2482–2491

    Article  CAS  Google Scholar 

  30. Wu CC, Wu RG, Huang JG, Lin YC, Chang HC (2003) Anal Chem 75:947–952

    Article  CAS  Google Scholar 

  31. Chen DC, Hsu FL, Zhan DZ, Chen CH (2001) Anal Chem 73:758–762

    Article  CAS  Google Scholar 

  32. Worth CC, Schmitz OJ, Kliem HC, Wiessler M (2000) Electrophoresis 21:2086–2091

    Article  CAS  Google Scholar 

  33. Li G, Gao J, Zhou X, Shimelis O, Giese RW (2003) J Chromatogr A 1004:47–50

    Article  CAS  Google Scholar 

  34. Langmaier J, Samec Z, Samcova E (2003) Electroanalysis 15:1555–1560

    Article  CAS  Google Scholar 

  35. Brett AMO, Piedade JA, Serrano SHP (2000) Electroanalysis 12:969–973

    Article  CAS  Google Scholar 

  36. Baldwin RP, Roussel TJ, Crain MM, Bathlagunda V, Jackson DJ, Gullapalli J, Conklin JA, Pai R, Naber JF, Walsh KM, Keynton RS (2002) Anal Chem 74:3690–3697

    Article  CAS  Google Scholar 

  37. Wilke R, Buttgenbach S (2003) Biosens Bioelectron 19(3):149–153

    Article  CAS  Google Scholar 

  38. Klett O, Bjoerefors F, Nyholm L (2001) Anal Chem 73:1909–1915

    Article  CAS  Google Scholar 

  39. Landers JP, Oda RP, Schuchard MD (1992) Anal Chem 64:2846–2851

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant from the National Cancer Institute (ProgramProject Grant 2PO1 CA49210-12) and in part by the NIH COBRE award 1 P20 R15563, and matching support from the State of Kansas.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdulilah A. Dawoud or Ryszard Jankowiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawoud, A.A., Kawaguchi, T. & Jankowiak, R. Integrated microfluidic device with an electroplated palladium decoupler for more sensitive amperometric detection of the 8-hydroxy-deoxyguanosine (8-OH-dG) DNA adduct. Anal Bioanal Chem 388, 245–252 (2007). https://doi.org/10.1007/s00216-007-1203-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1203-5

Keywords

Navigation