Skip to main content
Log in

Determination of single photon ionization cross sections for quantitative analysis of complex organic mixtures

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Soft single photon ionization (SPI)–time-of-flight mass spectrometry (TOFMS) is well suited for fast and comprehensive analysis of complex organic gas mixtures, which has been demonstrated in various applications. This work describes a calibration scheme for SPI, which enables quantification of a large number of compounds by only calibrating one compound of choice, in this case benzene. Photoionization cross sections of 22 substances were determined and related to the yield of benzene. These substances included six alkanes (pentane, hexane, heptane, octane, nonane, decane), three alkenes (propene, butane, pentene), two alkynes (propyne, butyne), two dienes (butadiene, isoprene), five monoaromatic species (benzene, toluene, xylene, styrene, monochlorobenzene) and NO. The cross sections of organic compounds differ by about one order of magnitude but the photoionization properties of compounds belonging to one compound class are rather similar. Therefore, the scheme can also be used for an approximate quantification of compound classes. This is demonstrated by a fast characterization and pattern recognition of two gasoline samples with different origins (Germany and South Africa) and a diesel sample (Germany). The on-line capability of the technique and the scheme is demonstrated by quantitatively monitoring and comparing the cold engine start of four vehicles: a gasoline passenger car, a diesel van, a motorbike and a two-stroke scooter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kourti T (2006) Anal Bioanal Chem 384:1043–1048

    Article  CAS  Google Scholar 

  2. Kessler RW (2006) Prozessanalytik. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  3. Mühlberger F, Hafner K, Kaesdorf S, Ferge T, Zimmermann R (2004) Anal Chem 76:6753–6764

    Article  CAS  Google Scholar 

  4. Pallix JB, Schühle U, Becker CH, Huestis DL (1989) Anal Chem 61:805–811

    Article  CAS  Google Scholar 

  5. Butcher DJ (2000) Microchem J 66:55–72

    Article  CAS  Google Scholar 

  6. Becker U, Shirley DA (1996) Physics of atoms and molecules. Plenum, New York

    Google Scholar 

  7. Miller JC, Compton RN (1982) J Chem Phys 76(8):3967–3973

    Article  CAS  Google Scholar 

  8. Holland DMP, Shaw DA, Sumner I, Bowler MA, Mackie RA, Shpinkova LG, Cooper L, Rennie EE, Johnson CAF (2002) Int J Mass Spectrom Ion Process 220:31–51

    CAS  Google Scholar 

  9. Sieck LW (1983) Anal Chem 55:38–41

    Article  CAS  Google Scholar 

  10. Becker CH (1991) Fresenius J Anal Chem 341:3–6

    Article  CAS  Google Scholar 

  11. Kornienko O, Ada ET, Tinka J, Wijesundara MBJ, Hanley L (1998) Anal Chem 70:1208–1213

    Article  CAS  Google Scholar 

  12. Materer N, Goodman RS, Leone SR (1997) J Vac Sci Technol A 15(4):2134–2142, Jul/Aug 1997

    Article  CAS  Google Scholar 

  13. Werner JH, Cool TA (1998) Chem Phys Lett 290:81–87

    Article  CAS  Google Scholar 

  14. Shi YJ, Hu XK, Mao DM, Dimov SS, Lipson RH (1998) Anal Chem 70:4534–4539

    Article  CAS  Google Scholar 

  15. Steenvoorden RJJM, Kistemaker PG, Vries AE, Michalak L, Nibbering NMM (1991) Int J Mass Spectrom Ion Process 107:475–489

    Article  CAS  Google Scholar 

  16. Trevor JL, Hanly L, Lykke KR (1997) Rapid Commun Mass Spectrom 11:587–589

    Article  CAS  Google Scholar 

  17. Vries MS, Hunziker HE (1997) J Photochem Photobiol A 106:31–36

    Article  Google Scholar 

  18. Zoller DL, Sum ST, Johnston MV (1999) Anal Chem 71:866–872

    Article  CAS  Google Scholar 

  19. Kuribayashi S, Yamakoshi H, Danno M, Sakai S, Tsuruga S, Futami H, Morii S (2005) Anal Chem 77:1007–1012

    Article  CAS  Google Scholar 

  20. Streibel T, Hafner K, Mühlberger F, Adam T, Warnecke R, Zimmermann R (2005) Anal Bioanal Chem 384:1096–1106

    Article  CAS  Google Scholar 

  21. Butcher DJ, Goeringer DE, Hurst GB (1999) Anal Chem 71:489–496

    Article  CAS  Google Scholar 

  22. Cao L, Mühlberger F, Adam T, Streibel T, Wang HZ, Kettrup A, Zimmermann R (2003) Anal Chem 75:5639–5645

    Article  CAS  Google Scholar 

  23. Dorfner R, Ferge T, Yeretzian C, Kettrup A, Zimmermann R (2004) Anal Chem 76:1386–1402

    Article  CAS  Google Scholar 

  24. Adam T, Baker RR, Zimmermann R (2007) Anal Bioanal Chem 387:575–584

    Article  CAS  Google Scholar 

  25. Adam T, Mitschke S, Streibel T, Baker RR, Zimmermann R (2006) Chem Res Toxicol 19:511–520

    Article  CAS  Google Scholar 

  26. Hatano Y (1999) Radiat Environ Biophys 38:239–247

    Article  CAS  Google Scholar 

  27. Hafner K (2004) Untersuchungen zur Bildung brennstoffabhängiger Stickoxide bei der Abfallverbrennung mittels on-line analytischer Messmethoden, PhD Thesis, Technische Universität München

  28. Mühlberger F (2003) Entwicklung von on-line-Analyseverfahren auf Basis der Einphotonenionisations-Massenspektrometrie, PhD Thesis, Technische Universität München

  29. Nir E, Hunziker HE, Vries MS (1999) Anal Chem 71:1674–1678

    Article  CAS  Google Scholar 

  30. Steenvoorden RJJM, Hage ERE, Boon JJ, Kistemaker PG, Weeding TL (1994) Org Mass Spectrom 29:78–84

    Article  CAS  Google Scholar 

  31. Feng R, Cooper G, Brion CE (2002) J Electron Spectrosc Relat Phenom 123:199–209

    Article  CAS  Google Scholar 

  32. McEnally CS, Pfefferle LD, Mohammed RK, Smooke MD, Colket MB (1999) Anal Chem 71:364–372

    Article  CAS  Google Scholar 

  33. Jochims HW, Baumgärtel H, Leach S (1996) Astron Astrophys 314:1003–1009

    CAS  Google Scholar 

  34. Feng R, Cooper G, Brion CE (2002) J Electron Spectrosc Relat Phenom 123:211–223

    Article  CAS  Google Scholar 

  35. Au JW, Cooper G, Burton GR, Brion CE (1994) Chem Phys 187:305–316

    Article  CAS  Google Scholar 

  36. Au JW, Cooper G, Burton GR, Olney TN, Brion CE (1993) Chem Phys 173:209–239

    Article  CAS  Google Scholar 

  37. Samson JAR, Marmo FF, Watanabe K (1962) J Chem Phys 36:783–786

    Article  CAS  Google Scholar 

  38. Koizumi H (1991) J Chem Phys 95:5846–5852

    Article  CAS  Google Scholar 

  39. Person JC, Nicole PP (1970) J Chem Phys 53:1767–1774

    Article  CAS  Google Scholar 

  40. Nakayama T, Watanabe K (1964) J Chem Phys 40:558–561

    Article  CAS  Google Scholar 

  41. Ho GH, Lin MS, Wang YL, Chang TW (1998) J Chem Phys 109:5868–5879

    Article  CAS  Google Scholar 

  42. Shaw DA, Holland DMP, MacDonald MA, Hayes MA, Shpinkova LG, Rennie EE, Johnson CAF, Parker JE, von Niessen W (1998) Chem Phys 230:97–116

    Article  CAS  Google Scholar 

  43. Feng R, Brion CE (2002) Chem Phys 282:419–427

    Article  CAS  Google Scholar 

  44. Watanabe K, Matsunaga FM, Sakai H (1967) Appl Opt 6:391–396

    Article  CAS  Google Scholar 

  45. Mühlberger F, Streibel T, Wieser J, Ulrich A, Zimmermann R (2005) Anal Chem 77:7408–7414

    Article  CAS  Google Scholar 

  46. Mühlberger F, Wieser J, Morozov A, Ulrich A, Zimmermann R (2005) Anal Chem 77:2218–2226

    Article  CAS  Google Scholar 

  47. Mühlberger F, Wieser J, Ulrich A, Zimmermann R (2002) Anal Chem 74:3790–3801

    Article  CAS  Google Scholar 

  48. NIST Chemistry WebBook (2007) National Institute of Standards and Technology. http://webbook.nist.gov/chemistry/. Cited 25 May 2007

  49. NIST Electron-Impact Cross Section Database (2007) National Institute of Standards and Technology. http://physics.nist.gov/PhysRefData/Ionization/Xsection.html. Cited 25 May 2007

  50. Jiao CQ, DeJoseph CA (2001) J Chem Phys 114:2166–2172

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the former and present members of the laser mass spectrometry group at the GSF - Research Center for Environment and Health and the University of Augsburg, F. Mühlberger, T. Streibel, K. Hafner, C. Mocker, and S. Mitschke for technical support and contributions during the measurement campaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adam, T., Zimmermann, R. Determination of single photon ionization cross sections for quantitative analysis of complex organic mixtures. Anal Bioanal Chem 389, 1941–1951 (2007). https://doi.org/10.1007/s00216-007-1571-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1571-x

Keywords

Navigation