Skip to main content
Log in

Characterization of linear and branched polyacrylates by tandem mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The unimolecular degradation of alkali-metal cationized polyacrylates with the repeat unit CH2CH(COOR) and a variety of ester pendants has been examined by tandem mass spectrometry. The fragmentation patterns resulting from collisionally activated dissociation depend sensitively on the size of the ester alkyl substituent (R). With small alkyl groups, as in poly(methyl acrylate), lithiated or sodiated oligomers (M) decompose via free-radical chemistry, initiated by random homolytic C-C bond cleavages along the polymer chain. The radical ions formed this way dissociate further by backbiting rearrangements and β scissions to yield a distribution of terminal fragments with one of the original end groups and internal fragments with 2–3 repeat units. If the ester alkyl group bears three or more carbon atoms, cleavages within the ester moieties become the predominant decomposition channel. This distinct reactivity is observed if R = t-butyl, n-butyl, or the mesogenic group (CH2)11-O-C6H4-C6H4-CN. The [M+alkali metal]+ ions of the latter polyacrylates dissociate largely by charge-remote 1,5-H rearrangements that convert COOR to COOH groups by expulsion of 1-alkenes. The acid groups may displace an alcohol unit from a neighboring ester pendant to form a cyclic anhydride, unless hindered by steric effects. Using atom transfer radical polymerization, hyperbranched polyacrylates were prepared carrying ester groups both within and between the branches. Unique alkenes and alcohols are cleaved from ester groups at the branching points, enabling determination of the branching architecture.

MALDI-CAD tandem mass spectrum of the lithiated 4-mer from a hyperbranched polyacrylate. The fragments marked by green stars diagnose the branched architecture shown on top of the spectrum. The fragments marked by violet stars diagnose a different isomer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Tanaka K, Waki H, Ido S, Akita Y, Yoshida Y, Toshida T (1988) Rapid Commun Mass Spectrom 2:151–153

    Article  CAS  Google Scholar 

  2. Karas M, Hillenkamp F (1988) Anal Chem 60:2299–2301

    Article  CAS  Google Scholar 

  3. Fenn JB, Mann M, Meng CK, Wang SF, Whitehouse CM (1989) Science 246:64–71

    Article  CAS  Google Scholar 

  4. Montaudo G, Lattimer RP (2002) Mass spectrometry of polymers. CRC Press, Boca Raton

    Google Scholar 

  5. Pasch H, Schrepp W (2003) MALDI-TOF mass spectrometry of synthetic polymers. Springer, Berlin Heidelberg New York

    Google Scholar 

  6. Aaserud DJ, Prokai L, Simonsick WJ Jr (1999) Anal Chem 71:4793–4799

    Article  CAS  Google Scholar 

  7. Buback M, Frauendorf H, Guenzler F, Vana P (2007) Polymer 48:5590–5598

    Article  CAS  Google Scholar 

  8. Norman J, Moratti SC, Slark AT, Irvine D, Jackson AT (2002) Macromolecules 35:8954–8961

    Article  CAS  Google Scholar 

  9. Singha NK, Rimmer S, Klumperman B (2004) Eur Polym J 40:159–163

    Article  CAS  Google Scholar 

  10. Jackson AT, Bunn A, Priestnall IM, Borman CD, Irvine DJ (2006) Polymer 47:1044–1054

    Article  CAS  Google Scholar 

  11. Bennet F, Lovestead TM, Barker PJ, Davis TP, Stenzel MH, Barner-Kowollik C (2007) Macromol Rapid Commun 28:1593–1600

    Article  CAS  Google Scholar 

  12. Ji H, Sakellariou G, Mays JM (2007) Macromolecules 40:3461–3467

    Article  CAS  Google Scholar 

  13. Wyzgoski F, Polce MJ, Wesdemiotis C, Arnould MA (2007) J Polym Sci A 45:2161–2171

    Article  CAS  Google Scholar 

  14. Buback M, Frauendorf H, Guenzler F, Vana P (2007) J Polym Sci A 45:2453–2467

    Article  CAS  Google Scholar 

  15. Jackson AT, Yates HT, Scrivens JH (1996) Rapid Commun Mass Spectrom 10:1668–1674

    Article  CAS  Google Scholar 

  16. Jackson AT, Jennings KR, Scrivens JH (1997) J Am Soc Mass Spectrom 8:76–85

    Article  CAS  Google Scholar 

  17. Jackson AT, Yates HT, Scrivens JH, Green MR, Bateman RH (1997) J Am Soc Mass Spectrom 8:1206–1213

    Article  CAS  Google Scholar 

  18. Gidden J, Jackson AT, Scrivens JH, Bowers MT (1999) Int J Mass Spectrom 188:121–130

    Article  CAS  Google Scholar 

  19. Borman CD, Jackson AT, Bunn A, Cutter AL, Irvine DJ (2000) Polymer 41:6015–6020

    Article  CAS  Google Scholar 

  20. Scrivens JH, Jackson AT (2000) Int J Mass Spectrom 200:261–276

    Article  CAS  Google Scholar 

  21. Jackson AT, Slade SE, Scrivens JH (2004) 238:265–277

  22. Jackson AT, Williams JP, Scrivens JH (2006) Rapid Commun Mass Spectrom 20:2717–2727

    Article  CAS  Google Scholar 

  23. Polce MJ, Ocampo M, Quirk RP Wesdemiotis C (2008) Anal Chem 80:347–354

    Article  CAS  Google Scholar 

  24. Polce MJ, Ocampo M, Quirk RP, Leigh AM, Wesdemiotis C (2008) Anal Chem 80:355–362

    Article  CAS  Google Scholar 

  25. Wollyung KM, Wesdemiotis C, Nagy A, Kennedy JP (2005) J Polym Sci A 43:946–958

    Article  CAS  Google Scholar 

  26. Wesdemiotis C, Pingitore F, Polce MJ, Russell VM, Kim Y, Kausch CM, Connors TH, Medsker RE, Thomas RR (2006) Macromolecules 39:8369–8378

    Article  CAS  Google Scholar 

  27. Chaicharoen K, Polce MJ, Wesdemiotis C (2006) Proc 54th ASMS conf mass spectrometry and allied topics. Seattle, WA, 28 May-1 June 2006

  28. Matyjaszewski K (2002) Cur Org Chem 6:67–82

    Article  CAS  Google Scholar 

  29. Kasko AM, Grunwald SR, Pugh C (2002) Macromolecules 35:5466–5474

    Article  CAS  Google Scholar 

  30. Kasko AM, Pugh C (2004) Macromolecules 37:4993–5001

    Article  CAS  Google Scholar 

  31. Pugh C, Fan G, Kasko AM (2005) Macromolecules 38:8071–8077

    Article  CAS  Google Scholar 

  32. Kjellander CBK, van Ijzendoorn LJ, de Jong AM, Broer DJ, Niemantsverdriet HJW (2005) Mol Cryst Liq Cryst 434:499–510

    Article  CAS  Google Scholar 

  33. Pugh C, Singh A (2007) Polym Prep 48:758–759

    CAS  Google Scholar 

  34. Singh A, Pugh C (2007) Polym Prep 48:791–792

    CAS  Google Scholar 

  35. Pugh C, Singh A (2007) Provisional US Patent no. 60/849,415

  36. Quirk RP, Ocampo M, Polce MJ, Wesdemiotis C (2007) Macromolecules 40:2352–2360

    Article  CAS  Google Scholar 

  37. Roepstorff P, Fohlman J (1984) Biomed Mass Spectrom 11:601

    Article  CAS  Google Scholar 

  38. Biemann K (1988) Biomed Environ Mass Spectrom 16:99–101

    Article  CAS  Google Scholar 

  39. Parsons AF (2000) An introduction to free radical chemistry. Blackwell Science, Oxford, UK

    Google Scholar 

  40. Benson SW (1976) Thermochemical kinetics. Wiley-Interscience, New York (Tables 2.14 and A.1)

    Google Scholar 

  41. Cohen N, Benson SW (1993) Chem Rev 93:2419–2438

    Article  CAS  Google Scholar 

  42. Lias SG, Bartmess JE, Liebman JF, Holmes JL, Levin RD, Mallard WG (1988) J Phys Chem Ref Data 17:Suppl 1

  43. http://webbook.nist.gov/

  44. Plessis C, Arzamendi G, Alberdi JM, van Herk AM, Leiza JR, Asua JM (2002) Macromol Rapid Commun 24:173–177

    Article  Google Scholar 

  45. Nikitin AN, Hutchinson RA, Buback M, Hesse P (2007) Macromolecules 40:8631–8641

    Article  CAS  Google Scholar 

  46. Matyjaszewski K, Gaynor SG, Müller AHE (1997) Macromolecules 30:7034–7041

    Google Scholar 

Download references

Acknowledgements

We thank the National Science Foundation for generous financial support (CHE-0517909 and DMR-0322338 and its Special Creativity Award DMR-0630301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chrys Wesdemiotis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaicharoen, K., Polce, M.J., Singh, A. et al. Characterization of linear and branched polyacrylates by tandem mass spectrometry. Anal Bioanal Chem 392, 595–607 (2008). https://doi.org/10.1007/s00216-008-1969-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-1969-0

Keywords

Navigation