Skip to main content
Log in

Determination of trace elements in bone by two-jet plasma atomic emission spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper describes an analytical method for trace element determination in bone tissues. The study of the influence of the bone matrix showed that the addition of 25% ground bone to graphite powder with introduced impurities did not affect the analytical signal of elements in the spectral excitation in a two-jet plasma. On basis of these investigations a method for direct multielement analysis of bone tissues was suggested. The sample preparation procedure consisted in mixing powdered bone (particle size 30 μm or less) with a spectroscopic buffer (graphite powder plus NaCl) in ratio 1:3 or to a greater extent depending on the analyte concentration. Reference samples based on graphite powder were used for construction of calibration curves. The NaCl concentration in analyzed and calibration samples was 15 wt%. The effect of particle size was revealed from the determination of Ba, Sr, and Mg. To eliminate this effect, treatment of the samples with nitric acid was proposed. The validation of the technique was confirmed by comparison of the analysis results of a bone sample with those obtained by inductively coupled plasma atomic emission spectrometry after wet acid digestion. The limits of detection estimated for 20 elements were the following (μg g-1): 0.1 (Ag), 1.0 (Al), 1.0 (Ba), 0.1 (Be), 1.2 (Bi), 0.4 (Cd), 1.0 (Co), 0.2 (Cu), 0.6 (Cr), 1.9 (In), 2 (Fe), 0.3 (Ga), 0.4 (Mn), 0.4 (Mo), 0.7 (Ni), 1.0 (Pb), 0.7 (Sn), 0.8 (Tl), 5 (Sr), 1.0 (Zn).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grattan J, Karaki L, Abu Hine D, Toland H, Gilbertson D, al-Saad Z, Pyatt B (2005) Mineral Mag 69:653–666

    Article  Google Scholar 

  2. Webb E, Amarasiriwardena D, Tauch S, Green EF, Jones J, Goodman AH (2005) Microchem J 81:201–208

    Article  Google Scholar 

  3. Grotti M, Abelmoschi ML, Dalla Riva S, Soggia F, Frache R (2005) Anal Bioanal Chem 381:1395–1400

    Article  Google Scholar 

  4. Pereira HB, Luna AS, Herms FW, de Campos RC (2004) J Braz Chem Soc 15:487–490

    CAS  Google Scholar 

  5. Roberts NB, Walsh HPJ, Kleneman L, Kelly SA, Helliwell TR (1996) J Anal At Spectrom 11:133–138

    Article  Google Scholar 

  6. Júnior DS, Júnior FB, de Souza SS, Krug FJ (2003) Anal At Spectrom 18:939–945

    Article  Google Scholar 

  7. Latkoczy C, Prohaska T, Watkins M, Teschler NM, Stingeder G (2001) J Anal At Spectrom 16:806–811

    Article  CAS  Google Scholar 

  8. Yoshinaga J, Yoneda M, Morita M, Suzuki T (1998) Appl Geochem 13:403–411

    Article  CAS  Google Scholar 

  9. Ahmed N, Osika NA, Wilson AM, Fleming DEB (2005) J Environ Monit 7:457–462

    Article  Google Scholar 

  10. Hoffmann E, Stephanowitz H, Ullrich E, Skole J, Lǘdke C, Hoffmann B (2000) J Anal At Spectrom 15:663–667

    Article  CAS  Google Scholar 

  11. Lochner F, Appleton J, Keenan F, Cooke M (1999) Anal Chim Acta 401:299–306

    Article  CAS  Google Scholar 

  12. Zaksas NP, Sultangazieva TT, Korda TM (2006) J Anal Chem 61:582–587

    Article  Google Scholar 

  13. Mattoon TR, Piepmeier EH (1983) Anal Chem 55:1045–1050

    Article  CAS  Google Scholar 

  14. Schramel P (1988) Spectrochim Acta Part B 43:881–896

    Article  Google Scholar 

  15. Meyer GA (1987) Spectrochim Acta Part B 42:333–339

    Article  Google Scholar 

  16. Yudelevich IG, Cherevko AS (1990) Chem Anal 35:295–309

    CAS  Google Scholar 

  17. Yudelevich IG, Cherevko AS, Engelsht VS, Pikalov VV, Tagiltsev AP, Zheenbaev ZZ (1984) Spectrochim Acta Part B 39:777–785

    Article  Google Scholar 

  18. Zaksas NP, Shelpakova IR, Gerasimov VA (2004) J Anal Chem 59:222–228

    Article  CAS  Google Scholar 

  19. Shelpakova IR, Zaksas NP, Komissarova LN, Kovalevskij SV (2002) J Anal At Spectrom 17:270–273

    Article  CAS  Google Scholar 

  20. Zheenbaev ZZ, Engelsht VS (1983) Dvukhstruinyi plazmotron (Two-jet plasmatron). Ilim, Frunze

    Google Scholar 

  21. Labusov VA, Popov VI, Bekhterev AV, Putmakov AN, Pak AC (2005) Anal Kontrol 9:104–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia P. Zaksas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaksas, N.P., Sultangazieva, T.T. & Gerasimov, V.A. Determination of trace elements in bone by two-jet plasma atomic emission spectrometry. Anal Bioanal Chem 391, 687–693 (2008). https://doi.org/10.1007/s00216-008-2050-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2050-8

Keywords

Navigation