Skip to main content
Log in

Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this review we discuss the application of laser-induced breakdown spectroscopy (LIBS) to the problem of detection of residues of explosives. Research in this area presented in open literature is reviewed. Both laboratory and field-tested standoff LIBS instruments have been used to detect explosive materials. Recent advances in instrumentation and data analysis techniques are discussed, including the use of double-pulse LIBS to reduce air entrainment in the analytical plasma and the application of advanced chemometric techniques such as partial least-squares discriminant analysis to discriminate between residues of explosives and non-explosives on various surfaces. A number of challenges associated with detection of explosives residues using LIBS have been identified, along with their possible solutions. Several groups have investigated methods for improving the sensitivity and selectivity of LIBS for detection of explosives, including the use of femtosecond-pulse lasers, supplemental enhancement of the laser-induced plasma emission, and complementary orthogonal techniques. Despite the associated challenges, researchers have demonstrated the tremendous potential of LIBS for real-time detection of explosives residues at standoff distances.

This review discusses the application of laser-induced breakdown spectroscopy (LIBS) to the problem of explosive residue detection. LIBS offers the capability for real-time, standoff detection of trace amounts of residue explosives on various surfaces

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Steinfeld JI, Wormhoudt J (1998) Ann Rev Phys Chem 49:203–232

    CAS  Google Scholar 

  2. Gresham GL, Davies JP, Goodrich LD, Blackwood LG, Liu BYH, Thimsem D, Yoo SH, Hallowell SF (1994) Proc SPIE 2276:34–44

    CAS  Google Scholar 

  3. Phares DJ, Holt JK, Smedley GT, Flagan RC (2000) J Forensic Sci 45:774–784

    CAS  Google Scholar 

  4. Munson CA, Gottfried JL, De Lucia FC Jr, McNesby KL, Miziolek AW (2007) In: Yinon J (ed) Laser-based Detection Methods of Explosives. Elsevier, Amsterdam

    Google Scholar 

  5. Cremers DA, Radziemski LJ (2006) Handbook of Laser-Induced Breakdown Spectroscopy. Wiley, West Sussex, UK

    Google Scholar 

  6. Rusak DA, Castle BC, Smith BW, Winefordner JD (1997) Crit Rev Anal Chem 27:257–290

    CAS  Google Scholar 

  7. Song K, Lee YI, Sneddon J (1997) Appl Spectrosc Rev 32:183–235

    CAS  Google Scholar 

  8. Rusak DA, Castle BC, Smith BW, Winefordner JD (1998) Trends Anal Chem 17:453–461

    CAS  Google Scholar 

  9. Sneddon J, Lee YI (1999) Anal Lett 32:2143–2162

    CAS  Google Scholar 

  10. Winefordner JD, Gornushkin IB, Pappas D, Matveev OI, Smith BW (2000) J Anal At Spectrom 15:1161–1189

    CAS  Google Scholar 

  11. Winefordner JD, Gornushkin IB, Correll T, Gibb E, Smith BW, Omenetto N (2004) J Anal At Spectrom 19:1061–1083

    CAS  Google Scholar 

  12. Miziolek A, Palleschi V, Schechter I (eds) (2006) Laser Induced Breakdown Spectroscopy. Cambridge University Press, Cambridge, UK

    Google Scholar 

  13. Pasquini C, Cortez J, Silva LMC, Gonzaga FB (2007) J Brazil Chem Soc 18:463–512

    CAS  Google Scholar 

  14. Sattmann R, Moench I, Krause H, Noll R, Couris S, Hatziapostolou A, Mavromanolakis A, Fotakis C, Larrauri E, Miguel R (1998) Appl Spectrosc 52:456–461

    CAS  Google Scholar 

  15. Anzano JM, Gornushkin IB, Smith BW, Winefordner JD (2000) Polym Eng Sci 40:2423–2429

    CAS  Google Scholar 

  16. Anzano J, Casanova M-E, Bermudez M-S, Lasheras R-J (2006) Polymer Testing 25:623–627

    CAS  Google Scholar 

  17. Gondal MA, Siddiqui MN (2007) J Environ Sci Health A 42:1989–1997

    CAS  Google Scholar 

  18. Anzano J, Lasheras RJ, Bonilla B, Casas J (2008) Polym Test 27:705–710

    CAS  Google Scholar 

  19. Wang Q, Jander P, Fricke-Begemann C, Noll R (2008) Spectrochim Acta B 63:1011–1015

    Google Scholar 

  20. Portnov A, Rosenwaks S, Bar I (2003) Appl Opt 42:2835–2842

    CAS  Google Scholar 

  21. Tran M, Sun S, Smith BW, Winefordner JD (2001) J Anal At Spectrom 16:628–632

    CAS  Google Scholar 

  22. DeLucia FC Jr, Harmon RS, McNesby KL, Winkel RJ Jr, Miziolek AW (2003) Appl Opt 42:6148–6152

    CAS  Google Scholar 

  23. Abdelli-Messaci S, Kerdja T, Bendib A, Malek S (2005) Spectrochim Acta B 60:955

    Google Scholar 

  24. Baudelet M, Boueri M, Yu J, Mao SS, Piscitelli V, Mao X, Russo RE (2007) Spectrochim Acta B 62B:1329–1334

    CAS  Google Scholar 

  25. NIST Atomic Spectra Database (version 3.1.5) (2008) National Institute of Standards and Technology, Gaithersburg, MD. http://physics.nist.gov/asd3. Accessed 18 June 2008

  26. Pearse RWB, Gaydon AG (1976) The Identification of Molecular Spectra, 4th edn. Wiley, New York

    Google Scholar 

  27. Babushok VI, DeLucia FC, Dagdigian PJ, Gottfried JL, Munson CA, Nusca MJ, Miziolek AW (2007) Spectrochim Acta B 62B:1321–1328

    CAS  Google Scholar 

  28. Bourne NK (2001) Proc R Soc London Ser A 457:1401–1426

    CAS  Google Scholar 

  29. Perry MD, Stuart BC, Banks PS, Feit MD, Yanovsky V, Rubenchik AM (1999) J Appl Phys 85:6803–6810

    CAS  Google Scholar 

  30. Roeske F, Benterou J, Lee R, Roos E (2003) Propellants, Explos Pyrotech 28:53–57

    CAS  Google Scholar 

  31. Gottfried JL, De Lucia Jr FC, Munson CA, Miziolek AW (2007) Spectrochim Acta B 62:1405–1411

    Google Scholar 

  32. Gottfried JL, De Lucia Jr FC, Munson CA, Miziolek AW (2008) J Anal At Spectrom 23:205–216

    CAS  Google Scholar 

  33. Existing and Potential Standoff Explosives Detection Techniques (2005) Committee on the Review of Existing and Potential Standoff Explosives Detection Techniques, National Research Council, Washington, D.C. http://www.nap.edu/catalog/10998.html. Accessed 6 Jan 2009

  34. Yinon J (1999) Forensic and Environmental Detection of Explosives. Wiley and Sons, Chichester, UK

    Google Scholar 

  35. Lee Y-I, Thiem TL, Kim G-H, Teng Y-Y, Sneddon J (1992) Appl Spectrosc 46:1597–1604

    CAS  Google Scholar 

  36. De Lucia FC Jr, Gottfried JL, Munson CA, Miziolek AW (2007) Spectrochim Acta B 62:1399–1404

    Google Scholar 

  37. Stratis DN, Eland KL, Angel SM (2000) Appl Spectrosc 54:1270

    CAS  Google Scholar 

  38. Angel SM, Stratis DN, Eland KL, Lai T, Berg MA, Gold DM (2001) Fresenius J Anal Chem 369:320

    CAS  Google Scholar 

  39. Corsi M, Cristoforetti G, Giuffrida M, Hidalgo M, Legnaioli S, Palleschi V, Salvetti A, Tognoni E, Vallebona C (2004) Spectrochim Acta B 59:723–735

    Google Scholar 

  40. Gautier C, Fichet P, Menut D, Lacour J-L, L’Hermite D, Dubessy J (2005) Spectrochim Acta B 60:792–804

    Google Scholar 

  41. Scaffidi J, Angel SM, Cremers DA (2006) Anal Chem 78:24–32

    Google Scholar 

  42. Babushok VI, De Lucia Jr FC, Gottfried JL, Munson CA, Miziolek AW (2006) Spectrochim Acta B 61:999–1014

    Google Scholar 

  43. Bogaerts A, Chen Z, Autrique D (2008) Spectrochim Acta B 63:746–754

    Google Scholar 

  44. Rai VN, Yueh FY, Singh JP (2008) Appl Opt 47:G30–G37

    Google Scholar 

  45. Harmon RS, DeLucia FC Jr, LaPointe A, Winkel RJ Jr, Miziolek AW (2006) Anal Bioanal Chem 385:1140–1148

    CAS  Google Scholar 

  46. De Lucia FC Jr, Samuels AC, Harmon RS, Walters RA, McNesby KL, LaPointe A, Winkel RJ Jr, Miziolek AW (2005) IEEE Sensors Journal 5:681–689

    Google Scholar 

  47. Bohling C, Scheel D, Hohmann K, Schade W, Reuter M, Holl G (2006) Appl Opt 45:3817–3825

    CAS  Google Scholar 

  48. Schade W, Bohling C, Hohmann K, Scheel D (2006) Laser and Particle Beams 24:241–247

    CAS  Google Scholar 

  49. Bohling C, Hohmann K, Scheel D, Bauer C, Schippers W, Burgmeier J, Willer U, Holl G, Schade W (2007) Spectrochim Acta B 62:1519–1527

    Google Scholar 

  50. Gottfried JL, Harmon RS, LaPointe A, Miziolek AW (2008), unpublished work

  51. Sdorra W, Brust J, Niemax K (1992) Mikrochim Acta 108:1–10

    CAS  Google Scholar 

  52. Geertsen C, Briand A, Chartier F, Lacour JL, Mauchien P, Sjostrom S, Mermet JM (1994) J Anal At Spectrom 9:17–22

    CAS  Google Scholar 

  53. Russo RE, Mao X, Borisov OV (1998) Trends Anal Chem 17:461–469

    CAS  Google Scholar 

  54. Hohreiter V, Carranza JE, Hahn DW (2004) Spectrochim Acta B 59:327–333

    Google Scholar 

  55. Shaikh NM, Hafeez S, Rashid B, Mahmood S, Baig MA (2006) J Phys D 39:4377–4385

    CAS  Google Scholar 

  56. von Allmen M, Blatter A (2002) Laser-Beam Interactions with Materials: Physical Principles and Applications, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  57. Zavecz TE, Saifi MA, Notis M (1975) Appl Phys Lett 26:165–168

    CAS  Google Scholar 

  58. Bauer C, Geiser P, Burgmeier J, Holl G, Schade W (2006) Appl Phys B 85:251–256

    CAS  Google Scholar 

  59. Wong DM, Dagdigian PJ (2008) Appl Opt 47:G149–G157

    CAS  Google Scholar 

  60. Simeonsson JB, Miziolek AW (1994) Appl Phys B 59:1–9

    Google Scholar 

  61. Abdellatif G, Imam H (2002) Spectrochim Acta B 57:1155–1165

    Google Scholar 

  62. Mateo MP, Nicolas G, Yanez A (2007) Appl Surf Sci 254:868–872

    CAS  Google Scholar 

  63. St-Onge L, Detalle V, Sabsabi M (2002) Spectrochim Acta B 57:121–135

    Google Scholar 

  64. Klein S, Fekrsanati F, Hildenhagen J, Dickmann K, Uphoff H, Marakis Y, Zafiropulos V (2001) Appl Surf Sci 171:242

    CAS  Google Scholar 

  65. Fornarini L, Spizzichino V, Colao F, Fantoni R, Lazic V (2006) Anal Bioanal Chem 385:272–280

    CAS  Google Scholar 

  66. Barnett C, Cahoon E, Almirall JR (2008) Spectrochim Acta B 63:1016–1023

    Google Scholar 

  67. Lu Q, Mao SS, Mao X, Russo RE (2008) J Appl Phys 104:083301–083307

    Google Scholar 

  68. OSHA Technical Manual, Section III: Chapter 6 (1995) Occupational Safety & Health Administration, Washington, DC. http://www.osha.gov/dts/osta/otm/otm_iii/otm_iii_6.html. Accessed 14 Jan 2009

  69. Koch GJ, Petros M, Yu J, Singh UN (2002) Appl Opt 41:1718–1721

    CAS  Google Scholar 

  70. Ferrero A, Laserna JJ (2008) Spectrochim Acta B 63:305–311

    Google Scholar 

  71. Pinnick RG, Chylek P, Jarzembski M, Creegan E, Srivastava V, Fernandez G, Pendleton JD, Biswas A (1988) Appl Opt 27:987–996

    CAS  Google Scholar 

  72. Liu X, Du D, Mourou G (1997) IEEE J Quantum Electron 33:1706–1716

    CAS  Google Scholar 

  73. Colombier JP, Combis P, Bonneau F, Harzic RL, Audouard E (2005) Phys Rev B 71:165406

    Google Scholar 

  74. Dikmelik Y, McEnnis C, Spicer JB (2008) Opt Express 16:5332–5337

    CAS  Google Scholar 

  75. McEnnis C, Spicer JB (2008) Proc of SPIE 6953:695309

    Google Scholar 

  76. De Lucia FC Jr, Gottfried JL, Miziolek AW (2009) Opt Express 17:419–425

    Google Scholar 

  77. Couairon A, Mysyrowicz A (2007) Phys Rep 441:47–189

    CAS  Google Scholar 

  78. Stelmaszczyk K, Rohwetter P, Mejean G, Yu J, Salmon E, Kasparian J, Ackermann R, Wolf J-P, Woste L (2004) Appl Phys Lett 85:3977–3979

    CAS  Google Scholar 

  79. Rohwetter P, Yu J, Mejean G, Stelmaszczyk K, Salmon E, Kasparian J, Wolf J-P, Woeste L (2004) J Anal At Spectrom 19:437–444

    CAS  Google Scholar 

  80. Rohwetter P, Stelmaszczyk K, Woste L, Ackermann R, Mejean G, Salmon E, Kasparian J, Yu J, Wolf JP (2005) Spectrochim Acta B 60:1025

    Google Scholar 

  81. Tzortzakis S, Anglos D, Gray D (2006) Opt Lett 31:1139–1141

    Google Scholar 

  82. Mirell D, Chalus O, Peterson K, Diels JC (2008) J Opt Soc Am B 25:B108–B111

    CAS  Google Scholar 

  83. Kearton B, Mattley Y (2008) Nature Photonics 2:537–540

    CAS  Google Scholar 

  84. Efthimion PC (2008) "Laser assisted microwave plasma spectroscopy (LAMPS) – Microwave enhancement of LIBS" in LIBS 2008 Book of Abstracts, Berlin, Aldershof, Germany

  85. Efthimion PC (2009), personal communication

  86. Killinger DK, Allen SD, Waterbury RD, Stefano C, Dottery EL (2007) Opt Express 15:12905–12915

    CAS  Google Scholar 

  87. Waterbury RD, Pal A, Killinger DK, Rose J, Dottery EL, Ontai G (2008) Proc of SPIE 6954:695409

    Google Scholar 

  88. McLean CJ, Marsh JH, Land AP, Clark A, Jennings R, Ledingham KWD, McCombes PT, Marshall A, Singhal RP, Towrie M (1990) Int J Mass Spectrom Ion Processes 96:R1–R7

    CAS  Google Scholar 

  89. Ledingham KWD, Borthwick IS, Singhal RP (1992) Surf Interface Anal 18:576–578

    CAS  Google Scholar 

  90. Borthwick IS, Ledingham KWD, Singhal RP (1992) Spectrochim Acta B 47:1259–1265

    Google Scholar 

  91. Cleveland D, Stchur P, Hou X, Yang KX, Zhou J, Michel RG (2005) Appl Spectrosc 59:1427–1444

    CAS  Google Scholar 

  92. Lui SL, Cheung NH (2005) Anal Chem 77:2617–2623

    CAS  Google Scholar 

  93. Lui SL, Cheung NH (2002) Appl Phys Lett 81:5114–5116

    CAS  Google Scholar 

  94. Wu JD, Cheung NH (2001) Appl Spectrosc 55:366–370

    CAS  Google Scholar 

  95. Chan SY, Cheung NH (2000) Anal Chem 72:2087–2092

    CAS  Google Scholar 

  96. Lui SL, Cheung NH (2003) Spectrochim Acta B 58:1613–1623

    Google Scholar 

  97. Shen XK, Lu YF (2008) Appl Opt 47:1810–1815

    CAS  Google Scholar 

  98. Hilbk-Kortenbruck F, Noll R, Wintjens P, Falk H, Becker C (2001) Spectrochim Acta B 56:933–945

    Google Scholar 

  99. Telle HH, Beddows DCS, Morris GW, Samek O (2001) Spectrochim Acta B 56:947–960

    Google Scholar 

  100. Schrader B, Moore DS (1997) Pure & Appl Chem 69:1451–1468

    CAS  Google Scholar 

  101. Long DA (2002) The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. Wiley, Chichester, West Sussex, England

    Google Scholar 

  102. Docherty FT, Monaghan PB, McHugh CJ, Graham D, Smith WE, Cooper JM (2005) IEEE Sensors J 5:632–640

    CAS  Google Scholar 

  103. Sharma SK, Misra AK, Sharma B (2005) Spectrochim Acta A 61:2404–2412

    Google Scholar 

  104. Carter JC, Angel SM, Lawrence-Snyder M, Scaffidi J, Whipple RE, Reynolds JG (2005) Appl Spectrosc 59:769–775

    CAS  Google Scholar 

  105. Bicchieri M, Nardone M, Russo PA, Sodo A, Corsi M, Cristoforetti G, Palleschi V, Salvetti A, Tognoni E (2001) Spectrochim Acta B 56:915

    Google Scholar 

  106. Burgio L, Melessanaki K, Doulgeridis M, Clark RJH, Anglos D (2001) Spectrochim Acta B 56:905–913

    Google Scholar 

  107. Bazalgette Courreges-Lacoste G, Ahlers B, Perez FR (2007) Spectrochim Acta A 68A:1023–1028

    CAS  Google Scholar 

  108. Dreyer CB, Mungas GS, Thanh P, Radziszewski JG (2007) Spectrochim Acta B 62B:1448–1459

    CAS  Google Scholar 

  109. Sharma SK, Misra AK, Lucey PG, Wiens RC, Clegg SM (2007) Spectrochim Acta A 68A:1036–1045

    CAS  Google Scholar 

  110. Giakoumaki A, Osticioli I, Anglos D (2006) Appl Phys A 83:537–541

    CAS  Google Scholar 

  111. Miziolek AW, Gottfried JL, DeLucia FC, Munson CA, Russo RE, Nelson MP, Treado PJ (2008) Chemical and Biological Defense Conference, New Orleans, LA, November 17–21, http://www.chemimage.com/docs/publications/Threat-Detection/CBD%20Summary%20Final%20Rev.pdf

  112. Wynn C, Palmacci S, Kunz R, Clow K, Rothschild M (2008) Appl Opt 47:5767–5776

    CAS  Google Scholar 

  113. Heflinger D, Arusi-Parpar T, Ron Y, Lavi R (2002) Opt Commun 204:327–331

    CAS  Google Scholar 

  114. Dumitras DC, Dutu DC, Matei C, Magureanu AM, Petrus M, Popa C (2007) J Optoelectron Adv Mater 9:3655–3701

    CAS  Google Scholar 

  115. Hasue K, Nakahara S, Morimoto J, Yamagami T, Okamoto Y, Miyakawa T (1995) Propellants, Explos, Pyrotech 20:187–191

    CAS  Google Scholar 

  116. Pushkarsky MB, Dunayevskiy IG, Prasanna M, Tsekoun AG, Go R, Patel CKN (2006) Proc Natl Acad Sci USA 103:19630–19634

    CAS  Google Scholar 

  117. Van Neste CW, Senesac LR, Thundat T (2009) Anal Chem . doi:10.1021/ac802364e

    Google Scholar 

  118. Lopez-Moreno C, Palanco S, Javier Laserna J, De Lucia F Jr, Miziolek AW, Rose J, Walters RA, Whitehouse AI (2006) J Anal At Spectrom 21:55–60

    CAS  Google Scholar 

  119. Rai S, Rai AK, Thakur SN (2008) Appl Phys B 91:645–650

    CAS  Google Scholar 

  120. Doucet FR, Belliveau TF, Fortier J-L, Hubert J (2007) Appl Spectrosc 61:327–332

    CAS  Google Scholar 

  121. Laville S, Sabsabi M, Doucet FR (2007) Spectrochim Acta B 62B:1557–1566

    CAS  Google Scholar 

  122. Garcia-Ayuso LE, Amador-Hernandez J, Fernandez-Romero JM, de Castro MDL (2002) Anal Chim Acta 457:247–256

    CAS  Google Scholar 

  123. Erdem A, Cilingiroglu A, Giakoumaki A, Castanys M, Kartsonaki E, Fotakis C, Anglos D (2008) J Archaeol Sci 35:2486–2494

    Google Scholar 

  124. Singh KP, Malik A, Mohan D, Sinha S, Singh VK (2005) Anal Chim Acta 532:15–25

    CAS  Google Scholar 

  125. Sirven JB, Bousquet B, Canioni L, Sarger L (2006) Anal Chem 78:1462–1469

    CAS  Google Scholar 

  126. Martin MZ, Labbe N, Rials TG, Wullschleger SD (2005) Spectrochim Acta B 60:1179

    Google Scholar 

  127. Sirven J-B, Salle B, Mauchien P, Lacour J-L, Maurice S, Manhes G (2007) J Anal At Spectrom 22:1471–1480

    CAS  Google Scholar 

  128. Clegg SM, Sklute E, Dyar MD, Barefield JE, Wiens RC (2009) Spectrochim Acta B 64:79–88

    Google Scholar 

  129. Labbé N, Swamidoss IM, André N, Martin MZ, Young TM, Rials TG (2008) Appl Opt 47:G158–G165

    Google Scholar 

  130. Munson CA, De Lucia FC Jr, Piehler T, McNesby KL, Miziolek AW (2005) Spectrochim Acta B 60:1217–1224

    Google Scholar 

  131. Diedrich J, Rehse SJ, Palchaudhuri S (2007) Appl Phys Lett 90:163901

    Google Scholar 

  132. Rehse SJ, Diedrich J, Palchaudhuri S (2007) Spectrochim Acta B 62:1169–1176

    Google Scholar 

  133. Snyder EG, Munson CA, Gottfried JL, De Lucia FC Jr, Gullett B, Miziolek A (2008) Appl Opt 47:G80–G87

    CAS  Google Scholar 

  134. Doucet FR, Faustino PJ, Sabsabi M, Lyon RC (2008) J Anal At Spectrom 23:694–701

    CAS  Google Scholar 

  135. Gottfried JL, De Lucia FC Jr, Munson CA, Miziolek AW (2008) Appl Spectrosc 62:353–363

    CAS  Google Scholar 

  136. Wold S, Esbensen K, Geladi P (1987) Chemom Intell Lab Syst 2:37–52

    CAS  Google Scholar 

  137. Wold S (1976) Pattern Recognit 8:127–139

    Google Scholar 

  138. Barker M, Rayens W (2003) J Chemometrics 17:166–173

    CAS  Google Scholar 

  139. Bishop CM (1994) Rev Sci Instrum 65:1803–1832

    Google Scholar 

  140. De Lucia FC Jr, Gottfried JL, Munson CA, Miziolek AW (2008) Appl Opt 47:G112–G121

    Google Scholar 

  141. Gottfried JL, De Lucia FC Jr, Miziolek AW (2009) J Anal At Spectrom 24:288–296

    CAS  Google Scholar 

  142. Yinon J (ed) (2007) Counterterrorist Detection Techniques of Explosives. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Gottfried.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottfried, J.L., De Lucia, F.C., Munson, C.A. et al. Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects. Anal Bioanal Chem 395, 283–300 (2009). https://doi.org/10.1007/s00216-009-2802-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2802-0

Keywords

Navigation