Skip to main content
Log in

Helium–hydrogen microplasma device (MPD) on postage-stamp-size plastic–quartz chips

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new design of a miniaturized, atmospheric-pressure, low-power (e.g., battery-operated), self-igniting, planar-geometry microplasma device (MPD) for use with liquid microsamples is described. The inexpensive MPD was a hybrid, three-substrate quartz–plastic–plastic structure and it was formed on chips with area the size of a small postage stamp. The substrates were chosen for rapid prototyping and for speedy device-geometry testing and evaluation. The ~700-µm (diameter) and 7-mm (long) He–H2 (3% H2) microplasma was formed by applying high-voltage ac between two needle electrodes. Operating conditions were found to be critical in sustaining stable microplasma on plastic substrates. Spectral interference from the electrode materials was not observed. A small-size, electrothermal vaporization system was used for introduction of microliter volumes of liquids into the MPD. The microplasma was operated from an inexpensive power supply. And, operation from a 14.4-V battery has been demonstrated. Microplasma background emission in the spectral range between 200 and 850 nm obtained using a portable, fiber-optic spectrometer is reported. Analyte emission from microliter volumes of dilute single-element standard solutions of Cd, Cu, K, Li, Mg, Mn, Na, Pb, and Zn is documented. Element-dependent precision was between 10–25% (the average was 15%) and detection limits ranged between 1.5 and 350 ng. The system was used for the determination of Na in diluted bottled-water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Karanassios V (2004) Spectrochim Acta Part B 59:909–926

    Article  Google Scholar 

  2. Broekaert JAC, Siemens V (2004) Anal Biaoanal Chem 380:185–189

    Article  CAS  Google Scholar 

  3. Foest R, Schmidt M, Becker K (2006) I J Mass Spectrom 248:87–102

    Article  CAS  Google Scholar 

  4. Miclea M, Okruss M, Kunze K, Ahlman N, Franzke J (2007) Anal Bioanal Chem 388:1565–1572

    Article  CAS  Google Scholar 

  5. Miclea M, Franzke J (2007) Plasma Chem Plasma Process 27:205–224

    Article  CAS  Google Scholar 

  6. Broekaert JAC, Jakubowski N (2007) Anal Bioanal Chem 388:1561–1563

    Article  CAS  Google Scholar 

  7. Karanassios V, Johnson K, Smith AT (2007) Anal Bioanal Chem 388:1595–1604

    Article  CAS  Google Scholar 

  8. Zapata IJ, Pohl P, Bings NH, Broekaert JAC (2007) Anal Bioanal Chem 388:1615–1623

    Article  Google Scholar 

  9. Xue J, Hopwood JA (2007) IEEE Trans Plasma Sci 35:1574–1579

    Article  CAS  Google Scholar 

  10. Ryu WK, Kim D-H, Lam HB, Houk RS (2007) Bull Korean Chem Soc 28:553–556

    Article  CAS  Google Scholar 

  11. Zhu Z, Chan GC-Y, Ray SJ, X Zhang X, Hieftje GM (2008) Anal Chem 80:8622–8627

    Article  CAS  Google Scholar 

  12. Taghioskoui M, Zaghloul ME, Montaser A (2008) IEEE Trans Plasma Sci 36:1262–1263

    Article  Google Scholar 

  13. Narendra JJ, Grotjohn TA, Asmussen J (2008) Plasma Sources Sci Technol 17:035027

    Article  Google Scholar 

  14. West J, Michels A, Kittel S, Jacob P, Franzke J (2007) Lab Chip 7:981–983

    Article  CAS  Google Scholar 

  15. Ideno T, Ichiki T (2006) Thin Solid Films 506–507:235–238

    Article  Google Scholar 

  16. Chao CC, Liao J-D, Chang J-E (eds) (2008) Special issue on microplasmas. J Phys D Appl Phys 41:190301

    Google Scholar 

  17. Martens T, Bogaerts A, Brok WJM, van der Mullen JJAM (2007) J Anal Atom Spectrom 22:1033–1042

    Article  CAS  Google Scholar 

  18. Shi JJ, Kong MG (2006) PRL 96:105009

    Article  CAS  Google Scholar 

  19. Wang Q, Doll F, Donnely VN, Economou DJ, Sadeghi N, Franz GF (2007) J Phys D: Appl Phys 40:4202–4211

    Article  CAS  Google Scholar 

  20. Belostotsky SG, Khandelwal R, Wang Q, Donnelly VM, Economou DJ, Sadeghi N (2008) Appl Phys Lett 92:221507

    Article  Google Scholar 

  21. Karanassios V, Grishko V, Reynolds GG (1999) J Anal Atom Spectrom 14:565–570

    Article  CAS  Google Scholar 

  22. Badiei HR, Karanassios V (2000) J Anal Atom Spectrom 15:1057–1062

    Article  CAS  Google Scholar 

  23. Schrermer S, Bings NH, Bilgic AM, Stonies R, Voges E, Broekaert JAC (2003) Spectrochim Acta Part B 58:1585–1596

    Article  Google Scholar 

  24. Schilling GD, Sheley JT, Broekaert JAC, Sperline RP, Denton MB, Barinaga CJ, Koppenaaal DW, Hieftje GM (2009) J Anal Atom Spectrom 24:34–40

    Article  CAS  Google Scholar 

  25. Larson GF, Fassel VA (1979) Appl Spectrosc 33:592–599

    Article  CAS  Google Scholar 

  26. Boumans PWJM (1989) Spectrochim Acta Part B 44B:1325–1344

    Article  CAS  Google Scholar 

  27. A. Montaser A, Golightly DW (eds) (1992) Inductively coupled plasmas in analytical atomic spectrometry, 2nd edn. VCH, New York

  28. Harrison GR (1969) MIT wavelength tables, vol 1 and 2, 3rd edn. MIT Press, Boston

    Google Scholar 

  29. NIST data base (2008) http://physics.nist.gov/PhysRefData/ASD/lines_form.html

  30. Boumans PWJM (1987) Inductively coupled plasma emission spectrometry, part 1. Wiley, New York

    Google Scholar 

  31. Karanassios V, Mew G (1997) Sens Mater 9:395–416

    CAS  Google Scholar 

  32. Karanassios V, Sharples JT (1997) Sens Mater 9:363–378

    CAS  Google Scholar 

  33. Eshaque S, Karanassios V (2004) In: Clement R, Burk B (eds) Proceedings, Fifth Biennial International Conference on Monitoring and Measurement of the Environment 5:252-257

Download references

Acknowledgments

Financial assistance for the Natural Sciences and Engineering Research Council (NSERC) of Canada and from the University of Waterloo (through awards of the Co-Op department) is gratefully acknowledged. Also, thanks to Taras Ryback (Co-Op student) and Nelmoy Biswas (Co-Op student) for their assistance during the early stages of this project. SW completed data collection as part of term-employment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassili Karanassios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weagant, S., Karanassios, V. Helium–hydrogen microplasma device (MPD) on postage-stamp-size plastic–quartz chips. Anal Bioanal Chem 395, 577–589 (2009). https://doi.org/10.1007/s00216-009-2942-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2942-2

Keywords

Navigation