Skip to main content
Log in

Depth profile characterization of ultra shallow junction implants

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A need for analysis techniques, complementary to secondary ion mass spectrometry (SIMS), for depth profiling dopants in silicon for ultra shallow junction (USJ) applications in CMOS technologies has recently emerged following the difficulties SIMS is facing there. Grazing incidence X-ray fluorescence (GIXRF) analysis in the soft X-ray range is a high-potential tool for this purpose. It provides excellent conditions for the excitation of the B-K and the As-L iii,ii shells. The X-ray standing wave (XSW) field associated with GIXRF on flat samples is used here as a tunable sensor to obtain information about the implantation profile because the in-depth changes of the XSW intensity are dependent on the angle of incidence. This technique is very sensitive to near-surface layers and is therefore well suited for the analysis of USJ distributions. Si wafers implanted with either arsenic or boron at different fluences and implantation energies were used to compare SIMS with synchrotron radiation-induced GIXRF analysis. GIXRF measurements were carried out at the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the electron storage ring BESSY II using monochromatized undulator radiation of well-known radiant power and spectral purity. The use of an absolutely calibrated energy-dispersive detector for the acquisition of the B-Kα and As-Lα fluorescence radiation enabled the absolute determination of the total retained dose. The concentration profile was obtained by ab initio calculation and comparison with the angular measurements of the X-ray fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iwai H (1998) Microelectron J 29:671–678

    Article  CAS  Google Scholar 

  2. Yau LD (1974) Solid State Electron 17:1059–1063

    Article  CAS  Google Scholar 

  3. Vandervorst W, Janssens T, Loo R, Caymax M, Peytier I, Lindsay R, Frühauf J, Bergmaier A, Dollinger G (2003) Appl Surf Sci 203–204:371–376

    Article  Google Scholar 

  4. Wittmaack K (1998) Surf Interface Anal 26:290–305

    Article  CAS  Google Scholar 

  5. Buyuklimanli TH, Magee CW, Marino JW, Walther SR (2006) J Vac Sci Technol B 24(1):408–413

    Article  CAS  Google Scholar 

  6. Janssens T, Vandervorst W (2000) In: Bertrand P, Migeon HN, Werner HW (eds) Proceedings of SIMS XII. Elsevier, Amsterdam, p 401

  7. Vandervorst W, Janssens T, Brijs B, Conard T, Huyghebaert C, Frühauf J, Bergmaier A, Dollinger G, Buyuklimanli T, VandenBerg JA, Kimura K (2004) Appl Surf Sci 231–232:618–631

    Article  Google Scholar 

  8. Pepponi G, Streli C, Wobrauschek P, Zoeger N, Luening K, Pianetta P, Giubertoni D, Barozzi M, Bersani M (2004) Spectrochim Acta Part B 59:1243–1249

    Article  Google Scholar 

  9. Thompson K, Flaitz PL, Ronsheim P, Larson DJ, Kelly TF (2007) Science 317:1370

    Article  CAS  Google Scholar 

  10. Yoneda Y, Horiuchi T (1971) Rev Sci Instrum 42:1069

    Article  CAS  Google Scholar 

  11. Barbee TW Jr, Warburton WK (1984) Mater Lett 3:17

    Article  CAS  Google Scholar 

  12. Bedzyk MJ, Bilderback DH, Bommarito GM, Caffrey M, Schildkraut JS (1988) Science 241:1788

    Article  CAS  Google Scholar 

  13. Weiss C, Knoth J, Schwenke H, Geisler H, Lerche J, Schulz R, Ullrich HJ (2000) Mikrochim Acta 133:65–68

    CAS  Google Scholar 

  14. IIda A, Sakurai K, Yoshinaga A, Gohshi Y (1986) Nucl Instrum Methods A 246:736–738

    Article  Google Scholar 

  15. Steen C, Martinez-Limia A, Pichler P, Ryssel H, Paul S, Lerch W, Pei L, Duscher G, Severac F, Cristiano F, Windl W (2008) J Appl Phys 104:023518

    Article  Google Scholar 

  16. Pei L, Duscher G, Steen C, Pichler P, Ryssel H, Napolitani E, De Salvador D, Piro AM, Terrasi A, Severac F, Cristiano F, Ravichandran K, Gupta N, Windl W (2008) J Appl Phys 104:043507

    Article  Google Scholar 

  17. Klockenkaemper R, Becker HW, Bubert H, Jenett H, von Bohlen A (2002) Spectrochim Acta Part B 57:1593–1599

    Article  Google Scholar 

  18. Klockenkaemper R, von Bohlen A (1992) J Anal At Spectrom 7:273–279

    Article  Google Scholar 

  19. Beckhoff B, Fliegauf R, Kolbe M, Mueller M, Weser J, Ulm G (2007) Anal Chem 79:7873–7882

    Article  CAS  Google Scholar 

  20. Pollakowski B, Beckhoff B, Reinhardt F, Braun S, Gawlitza P (2008) Phys Rev B 77:235408

    Article  Google Scholar 

  21. Hoenicke P, Beckhoff B, Kolbe M, List S, Conard T, Struyff H (2008) Spectrochim Acta Part B 63:1359–1364

    Article  Google Scholar 

  22. Klockenkämper R (1997) Total-reflection X-ray fluorescence analysis. Wiley, New York

    Google Scholar 

  23. de Boer DKG (1991) Phys Rev B 44(2):498

    Article  Google Scholar 

  24. Bedzcyk MJ, Bommarito GM, Schildkraut JS (1989) Phys Rev Lett 62:1376–1379

    Article  Google Scholar 

  25. Zegenhagen J (1993) Surf Sci Rep 18:199–271

    Article  Google Scholar 

  26. Elam WT, Ravel BD, Sieber JR (2002) Radiat Phys Chem 63:121–128

    Article  CAS  Google Scholar 

  27. Windt DL (1998) Comput Phys 12:360–370

    Article  CAS  Google Scholar 

  28. Beckhoff B, Ulm G (2001) Adv X-Ray Anal 44(37196):349–354

    CAS  Google Scholar 

  29. Ziegler JF (2004) Nucl Inst Meth B 219–220:1027–1036

    Article  Google Scholar 

  30. Senf F, Flechsig U, Eggenstein F, Gudat W, Klein R, Rabus H, Ulm G (1998) J Synchrotron Radiat 5:780–782

    Article  CAS  Google Scholar 

  31. Scholze F, Procop M (2001) X-Ray Spectrom 30:69–76

    Article  CAS  Google Scholar 

  32. Müller M, Beckhoff B, Ulm G, Kanngießer B (2006) Phys Rev A 74:012702

    Article  Google Scholar 

  33. Giubertoni D, Iacob E, Hoenicke P, Beckhoff B, Pepponi G, Gennaro S, Bersani M (2009) Proc INSIGHT

  34. Giubertoni D, Pepponi G, Beckhoff B, Hoenicke P, Gennaro S, Meirer F, Ingerle D, Steinhauser G, Fried M, Petrik P, Parisini A, Reading MA, Streli C, van den Berg JA, Bersani M (2009) AIP Conf Proc 1173:45

    Article  CAS  Google Scholar 

  35. Parisini A, Morandi V, Solmi S, Merli PG, Giubertoni D, Bersani M, van den Berg JA (2008) Appl Phys Lett 92:261907

    Article  Google Scholar 

  36. Beckhoff B, Hoenicke P, Giubertoni D, Pepponi G, Bersani M (2009) AIP Conf Proc 1173:29

    Article  CAS  Google Scholar 

  37. Nutsch A, Beckhoff B, Altmann R, Van den Berg JA, Giubertoni D, Hoenicke P, Bersani M, Leibold A, Meirer F, Müller M, Pepponi G, Otto M, Petrik P, Reading M, Pfitzner L, Ryssel H (2009) Solid State Phenom 145–146:97–100

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed as part of the joint research activity “Development of Ultra-Shallow Junction Depth Profiling” of the European Commission Research Infrastructure Action under the FP6 “Structuring the European Research Area” Program ANNA [37], contract No. 026134-RII3. The authors would like to thank M. Foad and T. Poon of FEP, Applied Materials (Santa Clara, CA) for providing the As ULE samples and A. Parisini (CNR-IMM, Italy), M. A. Reading (University of Salford, UK) for the STEM and MEIS data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Hönicke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hönicke, P., Beckhoff, B., Kolbe, M. et al. Depth profile characterization of ultra shallow junction implants. Anal Bioanal Chem 396, 2825–2832 (2010). https://doi.org/10.1007/s00216-009-3266-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3266-y

Keywords

Navigation