Skip to main content
Log in

Electrochemistry-mass spectrometry for mechanistic studies and simulation of oxidation processes in the environment

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Electrochemistry (EC) coupled to mass spectrometry (MS) has already been successfully applied to metabolism research for pharmaceutical applications, especially for the oxidation behaviour of drug substances. Xenobiotics (chemicals in the environment) also undergo various conversions; some of which are oxidative reactions. Therefore, EC-MS might be a suitable tool for the investigation of oxidative behaviour of xenobiotics. A further evaluation of this approach to environmental research is presented in the present paper using sulfonamide antibiotics. The results with sulfadiazine showed that EC-MS is a powerful tool for the elucidation of the oxidative degradation mechanism within a short time period. In addition, it was demonstrated that EC-MS can be used as a fast and easy method to model the chemical binding of xenobiotics to soil. The reaction of sulfadiazine with catechol, as a model substance for organic matter in soil, led to the expected chemical structure. Finally, by using EC-MS a first indication was obtained of the persistence of a component under chemical oxidation conditions for the comparison of the oxidative stability of different classes of xenobiotics. Overall, using just a few examples, the study demonstrates that EC-MS can be applied as a versatile tool for mechanistic studies of oxidative degradation pathways of xenobiotics and their possible interaction with soil organic matter as well as their oxidative stability in the environment. Further studies are needed to evaluate the full range of possibilities of the application of EC-MS in environmental research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kennedy JF, Turan N (1998) Metabolic Pathways of Agrochemicals: Parts 1 and 2. Royal Society of Chemistry, Cambridge

    Google Scholar 

  2. McNeill K, Boreen AL, Arnold WA (2005) Environ Sci Technol 39:3630–3638

    Article  Google Scholar 

  3. Zhang L, Xu C, Chen Z, Li X, Li P (2010) J Hazard Mater 173:168–172

    Article  CAS  Google Scholar 

  4. Klausen J, Haderlein SB, Schwarzenbach RP (1997) Environ Sci Technol 31:2642–2649

    Article  CAS  Google Scholar 

  5. Zhang C, Wang L, Pan G, Wu F, Deng N, Mailhot G, Mestankova H, Bolte M (2009) J Hazard Mater 169:772–779

    Article  CAS  Google Scholar 

  6. Barth JAC, Steidle D, Kuntz D, Gocht T, Mouvet C, von Tümpling W, Lobe I, Langenhoff A, Albrechtsen HJ, Janniche GS, Morasch B, Hunkeler D, Grathwohl P (2007) Sci Total Environ 376:40–50

    Article  CAS  Google Scholar 

  7. Barriuso E, Benoit P, Dubus IG (2008) Environ Sci Technol 42:1845–1854

    Article  CAS  Google Scholar 

  8. Zhang M, Smyser BP, Shalaby LM, Boucher CR, Berg DS (1999) J Agric Food Chem 47:3843–3849

    Article  CAS  Google Scholar 

  9. Winton K, Weber JB (1996) Weed Technol 10:202–209

    CAS  Google Scholar 

  10. Houot S, Topp E, Yassir A, Soulas G (2000) Soil Biol Biochem 32:615–625

    Article  CAS  Google Scholar 

  11. Spiteller M, Lamshöft M, Sukul P, Zühlke S (2007) Anal Bioanal Chem 388:1733–1745

    Article  Google Scholar 

  12. Wilber G, Wang G (1997) J Air Waste Manage Assoc 47:690–696

    CAS  Google Scholar 

  13. Karst U (2004) Angew Chem Int Ed 43:2476–2478

    Article  CAS  Google Scholar 

  14. Blankert B, Hayen H, van Leeuwen SM, Karst U (2005) Electroanalysis 17:1501–1510

    Article  CAS  Google Scholar 

  15. Baumann A, Lohmann W, Schubert B, Oberacher H, Karst U (2009) J Chromatogr A 1216:3192–3198

    Article  CAS  Google Scholar 

  16. Jurva U, Johansson T, Weidolf L (2007) Rapid Commun Mass Spectrom 21:2323–2331

    Article  Google Scholar 

  17. Lohmann W, Dötzer R, Gütter G, Van Leeuwen SM, Karst U (2009) J Am Soc Mass Spectrom 20:138–145

    Article  CAS  Google Scholar 

  18. Waterston K, Wang J, Bejan D, Bunce N (2006) J Appl Electrochem 36:227–232

    Article  CAS  Google Scholar 

  19. Zhao G, Pang Y, Liu L, Gao J, Lv B (2010) J Hazard Mater 179:1078–1083

    Article  CAS  Google Scholar 

  20. Balci B, Oturan N, Cherrier R, Oturan MA (2009) Water Res 43:1924–1934

    Article  CAS  Google Scholar 

  21. Jablonowski ND, Köppchen S, Hofmann D, Schäffer A, Burauel P (2009) Environ Pollut 157:2126–2131

    Article  CAS  Google Scholar 

  22. Seifrtová M, Nováková L, Lino C, Pena A, Solich P (2009) Anal Chim Acta 649:158–179

    Article  Google Scholar 

  23. Jurva U (2004) Ph.D. Thesis, Rijksuniversiteit Groningen, Groningen.

  24. Sukul P, Spiteller M, Lamshöft M, Zühlke S (2008) Chemosphere 71:717–725

    Article  CAS  Google Scholar 

  25. Pfeifer T, Tuerk J, Fuchs R (2005) J Am Soc Mass Spectrom 16:1687–1694

    Article  CAS  Google Scholar 

  26. Momberg A, Carrera ME, von Baer D, Bruhn C, Smyth MR (1984) Anal Chim Acta 159:119–127

    Article  Google Scholar 

  27. Hartig C (2000) Analytik, Vorkommen und Verhalten aromatischer Sulfonamide in der aquatischen Umwelt. Ph.D. thesis, TU Berlin, Berlin

  28. Zhou W, Moore DE (1994) Int J Pharm 110:55–63

    Article  CAS  Google Scholar 

  29. Bollag J-M, Myers CJ, Minard RD (1992) Sci Total Environ 123–124:205–217

    Google Scholar 

  30. Bialk HM, Simpson AJ, Pedersen JA (2005) Environ Sci Technol 39:4463–4473

    Article  CAS  Google Scholar 

  31. Bialk HM, Pedersen JA (2008) Environ Sci Technol 42:106–112

    Article  CAS  Google Scholar 

  32. Jablonowski ND, Koeppchen S, Hofmann D, Schaeffer A, Burauel P (2008) J Agric Food Chem 56:9548–9554

    Article  CAS  Google Scholar 

  33. Capriel P, Haisch A (1983) J Plant Nutr Soil Sci 146:474–480

    Article  CAS  Google Scholar 

  34. Takáts Z, Vargha M, Vékey K (2001) Rapid Commun Mass Spectrom 15:1735–1742

    Article  Google Scholar 

Download references

Acknowledgements

Fruitful discussions with Uwe Karst and Anne Baumann, both University of Münster, and also with Hans Lewandowski, Hans-Dieter Narres and Jean-Marie Sequaris, all Agrosphere Institute, Forschungszentrum Jülich GmbH, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Küppers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, T., Hofmann, D., Klumpp, E. et al. Electrochemistry-mass spectrometry for mechanistic studies and simulation of oxidation processes in the environment. Anal Bioanal Chem 399, 1859–1868 (2011). https://doi.org/10.1007/s00216-010-4575-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4575-x

Keywords

Navigation