Skip to main content
Log in

An analytical method for the simultaneous trace determination of acidic pharmaceuticals and phenolic endocrine disrupting chemicals in wastewater and sewage sludge by gas chromatography-mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This article presents an analytical method based on solid-phase extraction (SPE) and gas chromatography coupled with mass spectrometry for the simultaneous determination of the most frequently used acidic pharmaceutical residues, ibuprofen, diclofenac, naproxen and ketoprofen (KFN), and phenolic endocrine disruptors, bisphenol (BPA), triclosan (TCS), nonylphenol, nonylphenol monoethoxylate and nonylphenol diethoxylate, in wastewater and sewage sludge samples. In the first phase of the study, each compound has been characterized individually and afterwards in mixture as a trimethylsilyl derivative in order to identify the characteristic ions (m/z ratio) constituting the mass spectrum and to choose the ions for quantification and confirmation. Subsequently, derivatization was evaluated by testing different variables such as the volume of the derivatization solvent bis(trimethylsilyl)trifluoroacetamide and the effect of each catalyst, pyridine and 1% trimethyl chlorosilane, in the derivatized solution. For the analysis of wastewater samples, two commercial SPE cartridges, C18 and Oasis HLB, were compared for their extraction efficiency of the target compounds. The key parameter of extraction procedure included the effect of pH (2.5, 5.3 and 7) of the loading solution. For solid samples, parameters such as the extracted biomass, the volume of the extraction organic solvent and the effect of matrix interferences in chromatographic analysis were evaluated. By using C18 cartridges as purification procedure and ultrasound sonication, satisfactory mean relative recoveries with BPA-d16 and meclofenamic acid as surrogates were obtained ranging from 91% to 117% for wastewater and 84% to 107% for sewage sludge samples. Nine-point calibration of the standard mixture was performed by linear regression analysis with a correlation coefficient >0.99 for all the tested compounds. Limits of detection for the developed methods were established between 0.3 (KFN) and 14.8 (BPA) ng L−1, and 15.0 (TCS) and 32.9 (BPA) ng g−1 for wastewater and sewage sludge, respectively. Application to real samples of the wastewater treatment plant in Athens, the capital of Greece, demonstrated the presence of all tested compounds in most of the samples.

An analytical method for the simultaneous trace determination of acidic pharmaceuticals and phenolic endocrine disrupting chemicals in wastewater and sewage sludge by gas chromatography-mass spectrometry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Caliman FA, Gavrilescu M (2009) Clean 37:277–303

    CAS  Google Scholar 

  2. Hao C, Zhao X, Yang P (2007) TrAC-Trends Anal Chem 26:569–580

    Article  CAS  Google Scholar 

  3. Petrović M, Gonzalez S, Barceló D (2003) TrAC-Trends Anal Chem 22:685–696

    Article  Google Scholar 

  4. Kot-Wasic A, Dębska J, Namieśnik J (2007) TrAC-Trends Anal Chem 26:557–568

    Article  Google Scholar 

  5. Comerton AM, Andrews RC, Bagley DM (2009) Phil Trans R Soc A 367:3923–3939

    Article  CAS  Google Scholar 

  6. Chen HC, Wang PL, Ding WH (2008) Chemosphere 72:863–869

    Article  CAS  Google Scholar 

  7. Zorita S, Boyd B, Jönsson S, Yilmaz E, Svensson C, Mathiasson L, Bergström S (2008) Anal Chim Acta 626:147–154

    Article  CAS  Google Scholar 

  8. Samaras VG, Thomaidis NS, Stasinakis AS, Gatidou G, Lekkas TD (2010) Int J Environ An Chem 90:219–229

    Article  CAS  Google Scholar 

  9. Araujo L, Wild J, Villa N, Camargo N, Cubillan D, Prieto A (2008) Talanta 75:111–115

    Article  CAS  Google Scholar 

  10. Basheer C, Lee HK (2004) J Chromatogr A 1057:163–169

    Article  CAS  Google Scholar 

  11. Patrolecco L, Capri S, De Angelis S, Polesello S, Valsecchi S (2004) J Chromatogr A 1022:1–7

    Article  CAS  Google Scholar 

  12. Komarek K, Safarikova M, Hubka T, Safarik I, Kandelova M, Kujalova H (2009) Chromatographia 69:133–137

    Article  CAS  Google Scholar 

  13. Yu Z, Peldszus S, Huck PM (2007) J Chromatogr A 1148:65–77

    Article  CAS  Google Scholar 

  14. Lee HB, Peart TE, Svoboda ML (2005) J Chromatogr A 1094:122–129

    Article  CAS  Google Scholar 

  15. Zhao JL, Ying GG, Wang L, Yang JF, Yang XB, Yang LH, Li X (2009) Sci Total Environ 407:962–974

    Article  CAS  Google Scholar 

  16. Gibson R, Becerril-Bravo E, Silva-Castro V, Jiménez B (2007) J Chromatogr A 1169:31–39

    Article  CAS  Google Scholar 

  17. Durán-Alvarez JC, Becerril-Bravo E, Silva Castro V, Jiménez B, Gibson R (2009) Talanta 78:1159–1166

    Article  Google Scholar 

  18. Quintana JB, Rodil R, Reemtsma T (2004) J Chromatogr A 1061:19–26

    Article  CAS  Google Scholar 

  19. Rodríguez I, Carpinteiro J, Quintana JB, Carro AM, Lorenzo RA, Cela R (2004) J Chromatogr A 1024:1–8

    Article  Google Scholar 

  20. Díaz A, Ventura F, Galceran MT (2002) J Chromatogr A 963:159–167

    Article  Google Scholar 

  21. Liscio C, Magi E, Di Carro M, Suter MJF, Vermeirssen ELM (2009) Environ Pollut 157:2716–2721

    Article  CAS  Google Scholar 

  22. Pietrogrande MC, Basaglia G (2007) TrAC-Trends Anal Chem 26:1086–1094

    Article  CAS  Google Scholar 

  23. Radjenović J, Jelić A, Petrović M, Barceló D (2009) Anal Bioanal Chem 393:1685–1695

    Article  Google Scholar 

  24. Gentili A (2007) Anal Bioanal Chem 387:1185–1202

    Article  CAS  Google Scholar 

  25. Farré M, Petrovic M, Barceló D (2007) Anal Bioanal Chem 387:1203–1214

    Article  Google Scholar 

  26. Rodil R, Quintana JB, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D (2009) J Chromatogr A 1216:2958–2969

    Article  CAS  Google Scholar 

  27. Gatidou G, Thomaidis NS, Stasinakis AS, Lekkas TD (2007) J Chromatogr A 1138:32–41

    Article  CAS  Google Scholar 

  28. Núñez L, Turiel E, Tadeo JL (2007) J Chromatogr A 1146:157–163

    Article  Google Scholar 

  29. Cortazar E, Bartolomé L, Delgado A, Etxebarria N, Fernández LA, Usobiaga A, Zuloaga O (2005) Anal Chim Acta 534:247–254

    Article  CAS  Google Scholar 

  30. Rice SL, Mitra S (2007) Anal Chim Acta 589:125–132

    Article  CAS  Google Scholar 

  31. Díaz-Cruz MS, García-Galán MJ, Guerra P, Jelic A, Postigo C, Eljarrat E, Farré M, López de Alda MJ, Petrovic M, Barceló D (2009) TrAC-Trends Anal Chem 28:1263–1275

    Article  Google Scholar 

  32. Nie Y, Qiang Z, Zhang H, Adams C (2009) J Chromatogr A 1216:7071–7080

    Article  CAS  Google Scholar 

  33. Planas C, Guadayol JM, Droguet M, Escalas A, Rivera J, Caixach J (2002) Water Res 36:982–988

    Article  CAS  Google Scholar 

  34. Jelić A, Petrović M, Barceló D (2009) Talanta 80:363–371

    Article  Google Scholar 

  35. Kosjek T, Heath E, Krbavčič A (2005) Environ Int 31:679–685

    Article  CAS  Google Scholar 

  36. Gallart-Ayala H, Moyano E, Galceran MT (2010) Mass Spectrom Rev 29:776–805

    Article  CAS  Google Scholar 

  37. Camacho-Muñoz D, Martin J, Santos JL, Aparicio I, Alonso E (2009) J Sep Sci 32:3064–3073

    Article  Google Scholar 

  38. Hernando MD, Heath E, Petrovic M, Barceló D (2006) Anal Bioanal Chem 385:985–991

    Article  CAS  Google Scholar 

  39. Sanchez-Prado L, Garcia-Jares C, Llompart M (2010) J Chromatogr A 1217:2390–2414

    Article  CAS  Google Scholar 

  40. Dobor J, Varga M, Yao J, Chen H, Palkó G, Záray G (2010) Microchem J 94:36–41

    Article  CAS  Google Scholar 

  41. Stasinakis AS, Gatidou G, Mamais D, Thomaidis NS, Lekkas TD (2008) Water Res 42:1796–1804

    Article  CAS  Google Scholar 

  42. Ternes TA, Herrmann N, Bonerz M, Knacker T, Siegrist H, Joss A (2004) Water Res 38:4075–4084

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos S. Thomaidis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samaras, V.G., Thomaidis, N.S., Stasinakis, A.S. et al. An analytical method for the simultaneous trace determination of acidic pharmaceuticals and phenolic endocrine disrupting chemicals in wastewater and sewage sludge by gas chromatography-mass spectrometry. Anal Bioanal Chem 399, 2549–2561 (2011). https://doi.org/10.1007/s00216-010-4607-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4607-6

Keywords

Navigation