Skip to main content
Log in

Low-temperature direct bonding of glass nanofluidic chips using a two-step plasma surface activation process

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Owing to the well-established nanochannel fabrication technology in 2D nanoscales with high resolution, reproducibility, and flexibility, glass is the leading, ideal, and unsubstitutable material for the fabrication of nanofluidic chips. However, high temperature (~1,000 °C) and a vacuum condition are usually required in the conventional fusion bonding process, unfortunately impeding the nanofluidic applications and even the development of the whole field of nanofluidics. We present a direct bonding of fused silica glass nanofluidic chips at low temperature, around 200 °C in ambient air, through a two-step plasma surface activation process which consists of an O2 reactive ion etching plasma treatment followed by a nitrogen microwave radical activation. The low-temperature bonded glass nanofluidic chips not only had high bonding strength but also could work continuously without leakage during liquid introduction driven by air pressure even at 450 kPa, a very high pressure which can meet the requirements of most nanofluidic operations. Owing to the mild conditions required in the bonding process, the method has the potential to allow the integration of a range of functional elements into nanofluidic chips during manufacture, which is nearly impossible in the conventional high-temperature fusion bonding process. Therefore, we believe that the developed low-temperature bonding would be very useful and contribute to the field of nanofluidics.

Direct bonding of fused silica glass nanofluidic chips at low temperature, around 200 °C in ambient air, through a two-step plasma surface activation process which consists of an O2 RIE plasma treatment followed by a nitrogen MW radical activation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tegenfeldt JO, Prinz C, Cao H, Huang RL, Austin RH, Chou SY, Cox EC, Sturm JC (2004) Anal Bioanal Chem 378:1678–1692

    Article  CAS  Google Scholar 

  2. Kovarik ML, Jacobson SC (2009) Anal Chem 81:7133–7140

    Article  CAS  Google Scholar 

  3. Piruska A, Gong M, Sweedler JV, Bohn PW (2010) Chem Soc Rev 39:1060–1072

    Article  CAS  Google Scholar 

  4. Napoli M, Eijkel JC, Pennathur S (2010) Lab Chip 10:957–985

    Article  CAS  Google Scholar 

  5. Xu Y, Jang K, Yamashita T, Tanaka Y, Mawatari K, Kitamori T Anal Bioanal Chem 10.1007/s00216-011-5296-5

  6. Tsukahara T, Mawatari K, Hibara A, Kitamori T (2008) Anal Bioanal Chem 391:2745–2752

    Article  CAS  Google Scholar 

  7. Mao P, Han J (2005) Lab Chip 5:837–844

    Article  CAS  Google Scholar 

  8. Mellors JS, Gorbounov V, Ramsey RS, Ramsey JM (2008) Anal Chem 80:6881–6887

    Article  CAS  Google Scholar 

  9. Xu Y, Sato K, Mawatari K, Konno T, Jang K, Ishihara K, Kitamori T (2010) Adv Mater 22:3017–3021

    Article  CAS  Google Scholar 

  10. Chen LX, Luo GA, Liu KH, Ma JP, Yao B, Yan YC, Wang YM (2006) Sensor Actuat B-Chem 119:335–344

    Article  CAS  Google Scholar 

  11. Xu Y, Takai M, Konno T, Ishihara K (2007) Lab Chip 7:199–206

    Article  CAS  Google Scholar 

  12. Wei J, Nai SML, Wong CKS, Sun Z, Lee LC (2003) IEEE T Adv Packaging 26:289–294

    Article  CAS  Google Scholar 

  13. Fonslow BR, Bowser MT (2005) Anal Chem 77:5706–5710

    Article  CAS  Google Scholar 

  14. Queste S, Salut R, Rauch JY, Malek CGK (2010) Microsyst Technol 16:1485–1493

    Article  CAS  Google Scholar 

  15. Wang HY, Foote RS, Jacobson SC, Schneibel JH, Ramsey JM (1997) Sensor Actuat B-Chem 45:199–207

    Article  Google Scholar 

  16. Carroll S, Crain MM, Naber JF, Keynton RS, Walsh KM, Baldwin RP (2008) Lab Chip 8:1564–1569

    Article  CAS  Google Scholar 

  17. Zucker O, Langheinrich W, Kulozik M, Goebel H (1993) Sensor Actuat A-Phys 36:227–231

    Article  CAS  Google Scholar 

  18. Galchev TV, Welch WC, Najafi KJ (2011) Micromech Microeng 21:045020

    Article  Google Scholar 

  19. Visser MM, Weichel S, de Reus R, Hanneborg AB (2002) Sensor Actuat A-Phys 97–8:434–440

    Article  Google Scholar 

  20. Suga T, Kim TH, Howlader MMR (2004) Proc ECTC Conf 1:484–490

    Google Scholar 

  21. Howlader MMR, Suga T, Itoh H, Lee TH, Kim MJ (2009) J Electrochem Soc 156:H846–H851

    Article  CAS  Google Scholar 

  22. Wang CX, Htgurash E, Suga T (2008) Jpn J Appl Phys 47:2526–2530

    Article  CAS  Google Scholar 

  23. Howlader MMR, Selvaganapathy PR, Deen MJ, Suga T (2011) IEEE J Sel Top Quantum Electron 17:689–703

    Article  CAS  Google Scholar 

  24. Maszara WP, Goetz G, Caviglia A, Mckitterick JB (1988) J Appl Phys 64:4943–4950

    Article  CAS  Google Scholar 

  25. Vallin O, Jonsson K, Lindberg U (2005) Mat Sci Eng R 50:109–165

    Article  Google Scholar 

  26. Howlader MMR, Kibria MG, Zhang F, Kim MJ (2010) Talanta 82:508–515

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a Grant-in-Aid for Specially Promoted Research (21000007) of the Japan Society for the Promotion of Science (JSPS) and SCF (Special Coordination Funds for Promoting Science and Technology) of MEXT of Japan. Dr. Dong thanks the AQSIQ Public Sector-Oriented Research Fund (no. 201010017) for supporting his study. The authors also thank Mr. Akira Yamauchi, Bondtech Company Ltd., for technical support and discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Xu or Takehiko Kitamori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Wang, C., Dong, Y. et al. Low-temperature direct bonding of glass nanofluidic chips using a two-step plasma surface activation process. Anal Bioanal Chem 402, 1011–1018 (2012). https://doi.org/10.1007/s00216-011-5574-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5574-2

Keywords

Navigation