Skip to main content

Advertisement

Log in

Bioelectroanalysis with nanoelectrode ensembles and arrays

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This review deals with recent advances in bioelectroanalytical applications of nanostructured electrodes, in particular nanoelectrode ensembles (NEEs) and arrays (NEAs). First, nanofabrication techniques, principles of function, and specific advantages and limits of NEEs and NEAs are critically discussed. In the second part, some recent examples of bioelectroanalytical applications are presented. These include use of nanoelectrode arrays and/or ensembles for direct electrochemical analysis of pharmacologically active organic compounds or redox proteins, and the development of functionalized nanoelectrode systems and their use as catalytic or affinity electrochemical biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Viswanathan S, Rani C, Delerue-Matos C (2012) Ultrasensitive detection of ovarian cancer marker using immunoliposomes and gold nanoelectrodes. Anal Chim Acta 726:79–84

    Google Scholar 

  2. Shi HB, Yeh JI (2007) Part I: Recent developments in nanoelectrodes for biological measurements. Nanomedicine-UK 2:587–598

    Google Scholar 

  3. Arredondo M, Stoytcheva M, Zlatev R, Gochev V (2012) Some clinical applications of the electrochemical biosensors. Mini-Rev Med Chem 12:1301–13013

    Google Scholar 

  4. Kröger S, Law RJ (2005) Sensing the sea. Trends Biotechnol 23:250–256

    Google Scholar 

  5. Viswanathan S, Radecka H, Radecki J (2009) Electrochemical biosensors for food analysis. Monatsh Chem 140:891–899

    Google Scholar 

  6. Telsnig D, Terzic A, Krenn T, Kassarnig V, Kalcher K, Ortner A (2012) Development of a voltammetric amine oxidase-modified biosensor for the determination of biogenic amines in food. Int J Electrochem Sci 7:6893–6903

    Google Scholar 

  7. Tichoniuk M, Gwiazdowska D, Ligaj M, Filipiak M (2010) Electrochemical detection of foodborne pathogen aeromonas hydrophila by DNA hybridization biosensor. Biosens Bioelectron 26:1618–1623

    Google Scholar 

  8. Luo C, Lei Y, Yan L, Yu T, Li Q, Zhang D, Ding S, Ju H (2012) A rapid and sensitive aptamer-based electrochemical biosensor for direct detection of Escherichia Coli O111. Electroanalysis 24:1186–1191

    Google Scholar 

  9. De Leo M, Kuhn A, Ugo P (2007) 3D-ensembles of gold nanowires: Preparation, characterization and electroanalytical peculiarities. Electroanalysis 19:227–236

    Google Scholar 

  10. Heim M, Reculusa S, Ravaine S, Kuhn A (2012) Engineering of complex macroporous materials through controlled electrodeposition in colloidal superstructures. Adv Funct Mater 22:538–545

    Google Scholar 

  11. Silvestrini M, Schiavuta P, Scopece P, Pecchielan G, Moretto LM, Ugo P (2011) Modification of nanoelectrode ensembles by thiols and disulfides to prevent non specific adsorption of proteins. Electrochim Acta 56:7718–7724

    Google Scholar 

  12. Pozzi Mucelli S, Zamuner M, Tormen M, Stanta G, Ugo P (2008) Nanoelectrode ensembles as recognition platform for electrochemical immunosensors. Biosens Bioelectron 23:1900–1903

    Google Scholar 

  13. Godino N, Borrise X, Munoz FX, del Campo FJ, Compton RG (2009) Mass transport to nanoelectrode arrays and limitations of the diffusion domain approach: Theory and experiment. J Phys Chem C 113:11119–11125

    Google Scholar 

  14. Zoski CG, Yang N, He P, Berdondini L, Koudelka-Hep M (2004) Addressable nanoelectrode membrane arrays: fabrication and steady-state behavior. Anal Chem 79:1474–1484

    Google Scholar 

  15. Arumugam PU, Chen H, Siddiqui S, Weinrich JAP, Jejelowo A, Li J, Meyyapan M (2009) Wafer-scale fabrication of patterned carbon nanofiber nanoelectrode arrays: a route for development of multiplexed, ultrasensitive disposable biosensors. Biosens Bioelectron 24:2818–2824

    Google Scholar 

  16. Martin CR (1999) In: Bard AJ, Rubinstein I (eds) Electroanalytical Chemistry. Marcel Dekker, New York

  17. Menon VP, Martin CR (1995) Fabrication and evaluation of nanoelectrode ensembles. Anal Chem 67:1920–1928

    Google Scholar 

  18. Possin GE (1970) A method for forming very small diameter wires. Rev Sci Instrum 41:772–774

    Google Scholar 

  19. Williams WD, Giordano N (1984) Fabrication of 80 Å metal wires. Rev Sci Instrum 55:410–412

    Google Scholar 

  20. Routkevitch D, Bigioni T, Moskovits M, Xu J-M (1996) Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide template. J Phys Chem 100:14037–14047

    Google Scholar 

  21. Schoenberger C, van der Zande BMI, Fokkink LGJ, Henny M, Schmid C, Kruger M, Bachtold A, Huber R, Birk H, Staufer U (1997) Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology. J Phys Chem B 101:5497–5505

    Google Scholar 

  22. Penner RM, Martin CR (1987) Preparation and electrochemical characterization of ultramicroelectrode ensembles. Anal Chem 59:2625–2630

    Google Scholar 

  23. De Leo M, Pereira FC, Moretto LM, Scopece P, Polizzi S, Ugo P (2007) Towards a better understanding of gold electroless deposition in track-etched templates. Chem Mater 19:5955–5964

    Google Scholar 

  24. Gilliam RJ, Thorpe SJ, Kirk DJW (2006) A nucleation and growth study of gold nanowires and nanotubes in polymeric membranes. Appl Electrochem 37:233–239

    Google Scholar 

  25. Gambirasi A, Cattarin S, Musiani M, Vázquez-Gómez L, Verlato E (2011) Direct electrodeposition of metal nanowires on electrode surface. Electrochim Acta 56:8582–8588

    Google Scholar 

  26. Konishi Y, Motoyama M, Matsushima H, Fukunaka Y, Ishii R, Ito Y (2003) Electrodeposition of Cu nanowire arrays with a template. J Electroanal Chem 559:149–153

    Google Scholar 

  27. Motoyama M, Fukunaka Y, Sakka T, Ogata YH, Kikuchi S (2005) Electrochemical processing of Cu and Ni nanowire arrays. J Electroanal Chem 584:84–91

    Google Scholar 

  28. Piraux L, Duboix S, Champagne S (1997) Template synthesis of nanoscale materials using the membrane porosity. Nucl Inst Methods Phys Res B 131:357–363

    Google Scholar 

  29. Chiriac H, Moga AE, Urse M, Ovari T-A (2003) Preparation and magnetic properties of electrodeposited magnetic nanowires. Sensors Actuators A 106:348–351

    Google Scholar 

  30. Pirota KR, Navas D, Hernandez-Vélez M, Nielsch K, Vasquez M (2004) Novel magnetic materials prepared by electrodeposition techniques: arrays of nanowires and multi-layered microwires. J Alloy Compd 369:18–26

    Google Scholar 

  31. Platt M, Dryfeand RAW, Robaerts EPL (2004) Structural and electrochemical characterisation of Pt and Pd nanoparticles electrodeposited at the liquid/liquid interface. Electrochim Acta 49:3937–3945

    Google Scholar 

  32. Prieto AL, Sander MS, Gonzalez MSM, Gronsky R, Sands T, Stacy AM (2001) Electrodeposition of ordered Bi2Te3 nanowire arrays. J Am Chem Soc 123:7160–7161

    Google Scholar 

  33. Paunovic M, Schlesinger M (2000) Modern electroplating. Modern Electroplating. Wiley, New York

  34. Pereira FC, Moretto LM, De Leo M, Boldrin Zanoni MV, Ugo P (2006) Electrochemistry of phenothiazine and methylviologen biosensor electron-transfer mediators at nanoelectrode ensembles. Anal Chim Acta 575:16–24

    Google Scholar 

  35. Jirage KB, Hulteen JC, Martin CR (1997) Nanotubule-based molecular-filtration membranes. Science 278:655–658

    Google Scholar 

  36. Hulteen JC, Jirage KB, Martin CR (1998) Introducing chemical transport selectivity into gold nanotubule membranes. J Am Chem Soc 120:6603–6604

    Google Scholar 

  37. Jirage KB, Hulteen JC, Martin CR (1999) Effects of thiol chemisorption on the transport properties of gold nanotubule membranes. Anal Chem 71:4913–4918

    Google Scholar 

  38. Kobayashi Y, Martin CR (1999) Highly-sensitive methods for electroanalytical chemistry based on nanotubule membranes. Anal Chem 71:3665–3672

    Google Scholar 

  39. Bercu B, Enculescu I, Spohr R (2004) Copper tubes prepared by electroless deposition in ion track templates. Nucl Inst Methods B 225:497–502

    Google Scholar 

  40. Dryfe RAW, Simm AO, Kralj B (2003) Electroless deposition of palladium at bare and templated liquid/liquid interfaces. J Am Chem Soc 125:13014–13015

    Google Scholar 

  41. Tai Y-L, Teng H (2004) Template synthesis and electrochemical characterization of Nickelbased tubule electrode arrays. Chem Mater 16:338–342

    Google Scholar 

  42. Krishnamoorthy K, Zoski CG (2005) Fabrication of 3D gold nanoelectrode ensembles by chemical etching. Anal Chem 77:5068–5071

    Google Scholar 

  43. Yu S, Li N, Wharton J, Martin CR (2003) Nano wheat fields prepared by plasma-etching gold nanowire-containing membranes. Nano Lett 3:815–818

    Google Scholar 

  44. Ugo P, Moretto LM, Vezzà F (2002) Ionomer-coated electrodes and nanoelectrode ensembles as electrochemical environmental sensors: Recent advances and prospects. ChemPhysChem 3:917–925

    Google Scholar 

  45. Ugo P (2005) In: Grimes CA, Dickey EC, Pishko MV (eds) Encyclopedia of sensors. American Scientific Publishers, Stevenson Ranch

  46. Ugo P, Moretto LM (2007) In: Zoski C (ed) Handbook of Electrochemistry. Amsterdam, Elsevier

  47. Moretto LM, Pepe N, Ugo P (2004) Voltammetry of redox analytes at trace concentrations with nanoelectrodes ensembles. Talanta 62:1055–1060

    Google Scholar 

  48. Arrigan DWM (2004) Nanoelectrods, Nanoelectrode arrays and their application. Analyst 129:1157–1165

    Google Scholar 

  49. Errachid A, Mills CA, Pla-Roca M, Lopez MJ, Villanueva G, Bausells J, Crespo E, Teixidor F, Samitier J (2008) Focused ion beam production of nanoelectrode arrays. Mater Sci Eng C 28:777–780

    Google Scholar 

  50. Lanyon YH, De Marzi G, Watson YE, Quinn AJ, Gleeson JP, Redmond G, Arrigan DWM (2007) Fabrication of nanopore array electrodes by focused ion beam milling. Anal Chem 79:3048–3055

    Google Scholar 

  51. Sandison ME, Cooper JM (2006) Nanofabrication of electrode arrays by electron-beam and nanoimprint lithographies. Lab Chip 6:1020–1025

    Google Scholar 

  52. Losilia NS, Martinez J, Garcia R (2009) Large area nanoscale patterning of silicon surfaces by parallel local oxidation. Nanotechnology 20:475304

    Google Scholar 

  53. Losilia NS, Oxtoby NS, Martinez J, Garcia F, Garcia R, Mas-Torrent M, Vecciana J, Rovia C (2008) Sub-50 nm positioning of organic compounds onto silicon oxide patterns fabricated by local oxidation nanolithography. Nanotechnology 19:455308

    Google Scholar 

  54. Albonetti C, Martinez J, Losilia NS, Greco P, Cavallini M, Borgatti F, Montecchi M, Pasquali L, Garcia R, Biscarini F (2008) Parallel-local anodic oxidation of silicon surfaces by soft stamps. Nanotechnology 19:435303

    Google Scholar 

  55. Moretto LM, Tormen M, De Leo M, Carpentiero A, Ugo P (2011) Polycarbonate-based ordered arrays of electrochemical nanoelectrodes obtained by e-beam lithography. Nanotechnology 22:185305

    Google Scholar 

  56. Zamuner M, Pozzi Mucelli S, Tormen M, Stanta G, Ugo P (2008) Electrochemical nanobiosensors and protein detection. Eur J Nanomed 1:33–36

    Google Scholar 

  57. Bard AJ, Faulkner L (2000) Electrochemical Methods. VCH, Weinheim, ch. 5

  58. Dickinson EJF, Compton RG (2009) Diffuse double layer at nanoelectrodes. Phys Chem Lett C 113:17585–17589

    Google Scholar 

  59. Henstridge MC, Compton RG (2011) Mass transport to micro- and nanoelectrodes and their arrays: a review. Chem Rec 12:63–71

    Google Scholar 

  60. Lee HJ, Beriet C, Ferrigno R, Girault HH (2001) Cyclic voltammetry at a regular microdisc electrode array. J Electroanal Chem 502:138–145

    Google Scholar 

  61. Hulteen JC, Menon VP, Martin CR (1996) Template preparation of nanoelectrode ensembles achieving the 'pure-radial' electrochemical-response limiting case. J Chem Soc Faraday Trans 92:4029–4032

    Google Scholar 

  62. Cheng JF, Whitley LD, Martin CR (1989) Ultramicroelectrode ensembles. Comparison of experimental and theoretical responses and evaluation of electroanalytical detection limits. Anal Chem 61:762–766

    Google Scholar 

  63. Guo J, Lindner E (2009) Cyclic voltammograms at coplanar and shallow recessed microdisk electrode arrays: guidelines for design and experiment. Anal Chem 81:130–138

    Google Scholar 

  64. Davies TJ, Compton RG (2005) The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory. J Electroanal Chem 585:63–82

    Google Scholar 

  65. Huang X-J, O’Mahony AM, Compton RG (2009) Microelectrode arrays for electrochemistry: Approaches to fabrication. Small 7:776–788

    Google Scholar 

  66. Amatore C, Oleinik AI, Svir I (2009) Numerical simulation of diffusion processes at recessed disk microelectrode arrays using the quasi-conformal mapping approach. Anal Chem 81:4397–4405

    Google Scholar 

  67. Ugo P, Moretto LM, De Leo M, Doherty AP, Vallese C, Pentlavalli S (2010) Diffusion regimes at nanoelectrode ensembles in different ionic liquids. Electrochim Acta 55:2865–2872

    Google Scholar 

  68. Ugo P, Moretto LM, Vezzà F (2003) In: Baltes H, Fedder GK, Korvink JG (eds) Sensors Update. Wiley–VCH, Weinheim

  69. Ugo P, Moretto LM, Bellomi S, Menon VP, Martin CR (1996) Ion exchange voltammetry at polymer film coated nanoelectrode ensembles. Anal Chem 68:4160–4165

    Google Scholar 

  70. Brunetti B, Ugo P, Moretto LM, Martin CR (2000) Electrochemistry of phenothiazine and methylviologen biosensor electron-transfer mediators at nanoelectrode ensembles. J Electroanal Chem 491:166–174

    Google Scholar 

  71. Amatore C, Saveant JM, Tessier D (1983) Charge transfer at partially blocked surfaces. A model for the case of microscopic active and inactive sites. J Electroanal Chem 147:39–51

    Google Scholar 

  72. Greef R, Pea R, Peter LM, Pletcher D, Robinson J (1985) Instrumental Methods in Electrochemistry. Ellis Horwood Ltd., Chester

  73. Nicholson RS (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37:1351–1355

    Google Scholar 

  74. Triroj N, Jaroenapibal P, Shi H, Yeh JI, Beresford R (2011) Microfluidic chip-based nanoelectrode array as miniaturized biochemical sensing platform for prostate-specific antigen detection. Biosens Bioelectron 26:2927–2933

    Google Scholar 

  75. Ugo P, Pepe N, Moretto LM, Battagliarin M (2003) Voltammetry in the presence of ultrasound: sonovoltammetric detection of cytochrome c under very fast mass transport conditions. J Electroanal Chem 560:51–58

    Google Scholar 

  76. Hill HA, Nakagawa Y, Marken F, Compton RG (1996) Direct voltammetry of cytochrome c at trace concentrations with nanoelectrode ensembles. J Phys Chem 100:17395–17399

    Google Scholar 

  77. Eddowes MJ, Hill HAO (1977) Novel method for investigation of electrochemistry of metalloproteins—cytochrome-c. J Chem Soc Chem Commun 771–772

  78. Allen PM, Hill HAO, Walton NJ (1984) Surface modifiers for the promotion of direct electrochemistry of cytochrome. J Electroanal Chem 178:69–86

    Google Scholar 

  79. Eddowes JM, Hill HAO (1979) Electrochemistry of horse heart cytochrome c. J Am Chem Soc 101:4461–4462

    Google Scholar 

  80. Sagara T, Murakami H, Igarashi S, Sato H, Niki K (1991) Redox mechanism of cytochrome c at modified gold electrodes. Langmuir 7:3190–3196

    Google Scholar 

  81. Sagara T, Niwa K, Sone A, Innen C, Niki K (1990) Redox reaction mechanism of cytochrome c at modified gold electrodes. Langmuir 6:254–262

    Google Scholar 

  82. Lin Y, Lu F, Tu Y, Ren Z (2004) Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett 4:191–195

    Google Scholar 

  83. Cao L, Yan P, Sun K, Kirk DW (2008) Tailor-made gold brush nanoelectrode ensembles modified with l-cysteine for the detection of daunorubicine. Electrochim Acta 53:8144–8148

    Google Scholar 

  84. Cao L, Yan P, Sun K, Kirk DW (2009) Gold 3D brush nanoelectrode ensembles with enlarged active area for the direct voltammetry of daunorubicin. Electroanalysis 21:1183–1188

    Google Scholar 

  85. Gasparac R, Taft BJ, Lapierre-Devlin MA, Lazareck AD, Xu JM, Kelley SO (2004) Ultrasensitive electrocatalytic DNA detection at two- and three-dimensional nanoelectrodes. J Am Chem Soc 126:12270–12271

    Google Scholar 

  86. Lapierre-Devlin MA, Asher CL, Taft BJ, Gasparac R, Roberts MA, Kelley SO (2005) Amplified electrocatalysis at DNA-modified nanowires. Nano Lett 5:1051–1055

    Google Scholar 

  87. Silvestrini M, Fruk L, Ugo P (2012) Functionalized ensembles of nanoelectrodes as affinity biosensors for DNA hybridization detection. 40:265–270

  88. Silvestrini M, Ugo P (2012) Ensembles of nanoelectrodes modified with gold nanoparticles: Characterization and application to DNA-hybridization detection. Anal Bioanal Chem doi: 10.1016/j.bios.2012.07.041

  89. Fruk L, Müller J, Weber G, Narvaez A, Dominguez E, Niemeyer CM (2007) DNA-directed immobilization of horseradish peroxidase–DNA conjugates on microelectrode arrays: Towards electrochemical screening of enzyme libraries. Chem Eur 13:5223–5231

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank MIUR (Rome) (project: PRIN 2008MWHCP2) for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Ugo.

Additional information

Published in the topical collection Bioelectroanalysis with guest editors Nicolas Plumeré, Magdalena Gebala, and Wolfgang Schuhmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ongaro, M., Ugo, P. Bioelectroanalysis with nanoelectrode ensembles and arrays. Anal Bioanal Chem 405, 3715–3729 (2013). https://doi.org/10.1007/s00216-012-6552-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6552-z

Keywords

Navigation