Skip to main content
Log in

Graphene oxide nanoribbons (GNO), reduced graphene nanoribbons (GNR), and multi-layers of oxidized graphene functionalized with ionic liquids (GO–IL) for assembly of miniaturized electrochemical devices

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this critical review, new nanomaterials based on graphene (GN) are described, especially those used for the assembly of miniaturized electrochemical transducers. In particular, the physicochemical properties and mechanical features of few layers of graphene (FLGs) are described, as is their use for assembly of chemically modified sensors, biosensors, and immunosensors. The FLGs described here were functionalized by chemical treatment in solution, resulting in oxidized and/or reduced surfaces, edges, and sides. The presence of oxygenated functionality strongly affects the electrocatalysis and the electron-transfer properties of several molecular targets, not only in the solid phase (e.g. in field-effect transistors, FETs) but also in liquid matrices (chemically modified electrodes and biosensors). In addition, “green chemistry” reagents, for example ionic liquids (ILs) can be used for exfoliation and intercalation of graphene planes, to obtain stable and homogeneous nanodispersions. The assembled sensors, biosensors, and immunosensors are extremely useful for electrochemical detection of several electro-active targets of importance in food analysis, environmental monitoring, and clinical diagnosis. A detailed description of each analytical application has been given in this critical review and brief remarks on the emerging disciplines of nanomedicine and nanofoods are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Scheme 3
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cataldo F (2002) Carbon 40:157–162

    Article  CAS  Google Scholar 

  2. Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S (2004) Nature 430:870–873

    Article  CAS  Google Scholar 

  3. Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP et al (2009) Science 323:610–613

    Article  CAS  Google Scholar 

  4. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  5. http://www.technologyreview.com/view/428465/graphene-repairs-holes-by-knitting-itself-back/

  6. Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) ACS Nano 3:301–306

    Article  CAS  Google Scholar 

  7. Yang WR et al (2010) Angew Chem Int Ed 49:2114–2138

    Article  CAS  Google Scholar 

  8. Liu L, Wei T, Guang X, Zi X, He H, Dai H (2009) J Phys Chem C 113:8595–8600

    Article  CAS  Google Scholar 

  9. Nurmawati M, Ajikumar P, Renu R, Valiyaveettil S (2008) Adv Funct Mater 18:3213–3218

    Article  CAS  Google Scholar 

  10. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Nat Mater 6:652–655

    Article  CAS  Google Scholar 

  11. Schedin F et al (2007) Nat Mater 6:652–655

    Article  CAS  Google Scholar 

  12. Geim AK, Novoselov KS (2007) Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  13. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Angew Chem Int Ed 48(42):7752–7777

    Article  CAS  Google Scholar 

  14. Chen H, Muller MB, Gilmore KJ, Wallace GG, Li D (2008) Adv Mater 20:3557–3561

    Article  CAS  Google Scholar 

  15. Kim J et al (2009) Chem Soc Rev 38:372–390

    Article  CAS  Google Scholar 

  16. Biju V et al (2010) Chem Soc Rev 39:3031–3056

    Article  CAS  Google Scholar 

  17. Giorgi R, Baglioni M, Berti D, Baglioni P (2010) Acc Chem Res 43(6):695–704

    Article  CAS  Google Scholar 

  18. Valentini F, Carbone M, Palleschi G (2012) Int J Nanotechnol, accepted and in press

  19. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  20. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV et al (2005) Proc Natl Acad Sci 102:10451–10453

    Article  CAS  Google Scholar 

  21. Castro Neto A, Guinea F, Peres MN (2006) Phys World 19:33–37

    CAS  Google Scholar 

  22. Katsnelson MI (2007) Mater Today 10:20–27

    Article  CAS  Google Scholar 

  23. Geim AK, MacDonald AH (2007) Phys Today 60:35–41

    Article  CAS  Google Scholar 

  24. Geim AK, Novoselov KS (2007) Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  25. Geim AK (2009) Science 324:1530–1534

    Article  CAS  Google Scholar 

  26. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S et al (2008) Nat Nanotechnol 3:563–568

    Article  CAS  Google Scholar 

  27. Cataldo F, Compagnini G, D’Urso L, Palleschi G, Valentini F, Angelini G, Braun T (2010) Fuller Nanotubes Carbon Nanostruct 18:261–272

    Article  CAS  Google Scholar 

  28. Cataldo F, Compagnini G, Patané G, Ursini O, Angelini G, Ribic PR, Margaritondo G, Cricenti A, Palleschi G, Valentini F (2010) Carbon 48:2596–2602

    Article  CAS  Google Scholar 

  29. McCreery RL (1990) Electroanalytical Chemistry. Marcel Dekker, New York

    Google Scholar 

  30. Ji X, Banks CE, Crossley A, Compton RG (2006) Chem Phys Chem 7:1337

    Article  CAS  Google Scholar 

  31. Chang J-L, Chang K-H, Hu C-C, Cheng W-L, Zen J-M (2010) Electrochem Commun 12:596

    Article  CAS  Google Scholar 

  32. Wildgoose GG, Banks CE, Leventis HC, Compton RG (2006) Microchim Acta 152:187

    Article  CAS  Google Scholar 

  33. Frank IW, Tanenbaum DM, Van der Zande AM, McEuen PL (2007) J Vac Sci Technol B 25:2558–2561

    Article  CAS  Google Scholar 

  34. Morozov SV et al (2008) Phys Rev Lett 100:016602

    Article  CAS  Google Scholar 

  35. Novoselov KS et al (2005) Nature 438:197–200

    Article  CAS  Google Scholar 

  36. Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS (2006) J Mater Chem 16:155–158

    Article  CAS  Google Scholar 

  37. Robinson JT, Perkins FK, Snow ES, Wei ZQ, Sheehan PE (2008) Nano Lett 8:313740

    Google Scholar 

  38. Barbolina II, Novoselov KS, Morozov SV, Dubonos SV, Missous M, Volkov AO, Christian DA, Grigorieva IV, Geim AK (2006) Appl Phys Lett 88:013901

    Article  CAS  Google Scholar 

  39. Dan Y, Lu Y, Nicholas JK, Luo Z, Charlie Johnson AT (2009) Nano Letters 9:1472–1475

    Article  CAS  Google Scholar 

  40. Finnigan B (2009) Barrier polymers. In: Yam KL (ed) The Wiley Encyclopedia of Packaging Technology, John Wiley and Sons, Inc., New York 103–109

  41. Dong HF et al (2010) Anal Chem 82:5511–5517

    Article  CAS  Google Scholar 

  42. Chang HX et al (2010) Anal Chem 82:2341–2346

    Article  CAS  Google Scholar 

  43. He QY et al (2010) ACS Nano 4:3201–3208

    Article  CAS  Google Scholar 

  44. Shao YY et al (2010) Electroanalysis 22:1027–1036

    Article  CAS  Google Scholar 

  45. Wang Z, Zhou X, Zhang J, Boey F, Zhang H (2009) J Phys Chem C 113:14071–14075

    Article  CAS  Google Scholar 

  46. Kaittanis C, Naser SA, Perez JM (2007) Nano Lett 7:380

    Article  CAS  Google Scholar 

  47. Fornara A, Johansson P, Petersson K, Gustafsson S, Qin J, Olsson E, Ilver D, Krozer A, Muhammed M, Johansson C (2008) Nano Lett 8:3423

    Article  CAS  Google Scholar 

  48. Mohanty N, Berry V (2008) Nano Lett 8:4469–4476

    Article  CAS  Google Scholar 

  49. Patil AJ et al (2009) Adv Mater 21:3159–3164

    Article  CAS  Google Scholar 

  50. Broude NE (2002) Trends Biotechnol 20:249–256

    Article  CAS  Google Scholar 

  51. Yang X, Niu G, Cao X, Wen Y, Xiang R, Duan H, Chen Y (2012) J Mater Chem 22:6649–6654

    Article  CAS  Google Scholar 

  52. Liu Z et al (2008) J Am Chem Soc 130:10876–10877

    Article  CAS  Google Scholar 

  53. Sun XM et al (2008) Nano Res 1:203–212

    Article  CAS  Google Scholar 

  54. Zhang L et al (2010) Small 6:537–544

    Article  CAS  Google Scholar 

  55. Ménard-Moyon C, Venturelli E, Fabbro C, Samorì C, Da Ros T, Kostarelos K, Prato M, Bianco A (2010) Expert Opin Drug Discov 5(7):691–707

    Article  Google Scholar 

  56. Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Chem Res Toxicol 25:15–34

    Article  CAS  Google Scholar 

  57. Yao J, Sun Y, Yang M, Duan Y (2012) J Mater Chem 22:14313–14329

    Article  CAS  Google Scholar 

  58. Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H (2011) Mater Today 14:316–323

    Article  CAS  Google Scholar 

  59. Cong H-P, He J-J, Lu Y, Yu S-H (2010) Small 6(2):169–173

    Article  CAS  Google Scholar 

  60. Xue Y, Liu Y, Lu F, Qu J, Chen H, Dai L (2012) J Phys Chem Lett 3(12):1607–1612

    Article  CAS  Google Scholar 

  61. Valentini F, Diamanti A, Carbone M, Bauer EM, Palleschi G (2012) Appl Surf Sci 258(16):5965–5980

    Article  CAS  Google Scholar 

  62. Valentini F, Carbone M, De Cupis A, Conte V, Palleschi G II Conference “Diagnosis for the Conservation and Valorization of Cultural Heritage” 15/16 December 2011

  63. Giorgi R, Ambrosi M, Toccafondi N, Baglioni P (2010) Chem Eur J 16:9374–9382

    Article  CAS  Google Scholar 

  64. Colomban P (2009) J Nano Res 8:109–132

    Google Scholar 

  65. Colomban P, Tourniè A, Ricciardi P (2009) J Raman Spectrosc 40:1949–1955

    Google Scholar 

  66. Ashby MF, Ferreira PJ, Schodek DL (2000) Nanomaterials, nanotechnologies and design Elsevier, ISBN: 978-0-7506-8149-0

  67. Možir A, Gonzalez L, Cigić IK, Wess TJ, Rabin I, Hahn O, Strlič M (2012) Anal Bioanal Chem 402(4):1559–1566

    Article  CAS  Google Scholar 

  68. Reynhout IC, Cornelissen JJLM, Nolte RJM (2009) Acc Chem Res 42(6):681–692

    Article  CAS  Google Scholar 

  69. Andreescu S, Njagi J, Ispas C, Ravalli MT (2009) J Environ Monit 11:27–40

    Article  CAS  Google Scholar 

  70. Nomani Md WK, Shishir R, Qazia M, Diwana D, Shields VB, Spencer MG, Tompa GS, Sbrockey NM, Koley G (2010) Sensors Actuators B 150:301–307

    Article  CAS  Google Scholar 

  71. Yao Y, Chen X, Zhu J, Zeng B, Wu Z, Li X (2012) Nanoscale Res Lett 7:363–369

    Article  Google Scholar 

  72. Shivaraman S, Chandrashekhar MVS, Boeckl JJ, Spencer MG (2009) J Electron Mater 38:725–730

    Article  CAS  Google Scholar 

  73. Koley G, Spencer MG (2001) J Appl Phys 90:337–344

    Article  CAS  Google Scholar 

  74. Koley G, Qazi M, Lakshmanan L, Thundat T (2007) Appl Phys Lett 90:173105

    Article  CAS  Google Scholar 

  75. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Nat Mater 6:652–655

    Article  CAS  Google Scholar 

  76. Lu G, Ocola LE, Chen J (2009) Appl Phys Lett 94:08311

    Google Scholar 

  77. Van de Craats AM, Stutzmann N, Bunk O, Nielsen MM, Watson M, Mullen K, Chanzy RD, Sirringhaus H, Friend RH (2003) Adv Mater 15(6):495

    Article  Google Scholar 

  78. Tedesco JL, VanMil BL, Myers-Ward RL, McCrate JM, Kitt SA, Campbell PM, Jernigan GG, Culbertson JC, Eddy CR Jr, Gaskill DK (2009) Appl Phys Lett 95:122102

    Article  CAS  Google Scholar 

  79. Zhou M, Zhai Y, Dong S (2009) Anal Chem 81:5603–5613

    Article  CAS  Google Scholar 

  80. Katz E, Willner I (2004) Angew Chem Int Ed 43:6042–6108

    Article  CAS  Google Scholar 

  81. Kim J et al (2009) Chem Soc Rev 38:372–390

    Article  CAS  Google Scholar 

  82. Nel AE et al (2009) Nat Mater 8:543–557

    Article  CAS  Google Scholar 

  83. Biju V et al (2010) Chem Soc Rev 39:3031–3056

    Article  CAS  Google Scholar 

  84. Park S et al (2010) Adv Mater 22:1736–1740

    Article  CAS  Google Scholar 

  85. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Trends Biotechnol 29:205–212

    Article  CAS  Google Scholar 

  86. Liu Y, Qu X, Guo H, Chen H, Liu B, Dong S (2006) Biosens Bioelectron 21:2195–2201

    Article  CAS  Google Scholar 

  87. Davidson MB (2001) Diabetes Spectrom 14:67–71

    Article  Google Scholar 

  88. Liu G, Lin Y (2006) Electrochem Commun 8:251–256

    Article  CAS  Google Scholar 

  89. Wu L, Zhang X, Ju H (2007) Biosens Bioelectron 23:479–484

    Article  CAS  Google Scholar 

  90. Wang G, Thai NM, Yau S-T (2007) Biosens Bioelectron 22:2158–2164

    Article  CAS  Google Scholar 

  91. Rubianes MD, Rivas GA (2003) Electrochem Commun 5:689–694

    Article  CAS  Google Scholar 

  92. Lee D, Lee J, Kim J, Na HB, Kim B, Shin CH, Kwak JH, Dohnalkova A, Grate JW, Hyeon T, Kim HS (2005) Adv Mater 17:2828–2833

    Article  CAS  Google Scholar 

  93. Lu J, Drzal LT, Worden RM, Lee I (2007) Chem Mater 19:6240–6246

    Article  CAS  Google Scholar 

  94. Zhou M, Shang L, Li B, Huang L, Dong S (2008) Biosens Bioelectron 24:442–447

    Article  CAS  Google Scholar 

  95. Wang J, Musameh M, Lin YJ (2003) Am Chem Soc 125:2408–2409

    Article  CAS  Google Scholar 

  96. Chen H, Muller MB, Gilmore KJ, Wallace GG, Li D (2008) Adv Mater 20:3557–3561

    Article  CAS  Google Scholar 

  97. Yu X, Munge B, Patel V, Jensen G, Bhirde A, Gong J, Kim S, Gillespie J, Gutkind J, Papadimitrakopoulos F, Rusling J (2006) J Am Chem Soc 128:11199–11205

    Article  CAS  Google Scholar 

  98. Zhong Z, Wub W, Wang D, Wang D, Shan J, Qing Y, Zhang Z (2010) Biosens Bioelectron 25:2379–2383

    Article  CAS  Google Scholar 

  99. Valentini F, Romanazzo D, Carbone M, Palleschi G (2012) Electroanalysis 24:1–10

    Article  CAS  Google Scholar 

  100. Boisselier E, Astruc D (2009) Chem Soc Rev 38:1759–1782

    Article  CAS  Google Scholar 

  101. Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Small 6(4):537–544

    Article  CAS  Google Scholar 

  102. Feng L, Zhuang L (2011) Nanomedicine 6(2):317–324

    Article  CAS  Google Scholar 

  103. Shen H, Zhang L, Liu M, Zhang Z (2012) Theranostics 2(3):283–294

    Article  CAS  Google Scholar 

  104. Zhang Y, Nayak TR, Hong H, Cai W (2012) Nanoscale 4:3833–3842

    Article  CAS  Google Scholar 

  105. Bao H, Pan Y, Ping Y, Sahoo NG, Wu T, Li L, Li J, Gan LH (2011) Small 7(11):1569–1578

    Article  CAS  Google Scholar 

  106. Li J-L, Bao H-C, Hou X-L, Sun L, Wang X-G, Gu M (2012) Angew Chem Int Ed 51(8):1830–1834

    Article  CAS  Google Scholar 

  107. Hernandez FJ, Ozalp VC (2012) Biosensors 2:1–14, a review and references cited therein

    Google Scholar 

  108. Wang L, Zhu J, Han L, Lihua J, Zhu C, Wang E, Dong S (2012) ACS Nano 84:7301–7307

    CAS  Google Scholar 

  109. Wang L, Xu M, Han L, Zhou M, Zhu C, Dong S (2012) Anal Chem 84:7301–7307

    Article  CAS  Google Scholar 

  110. Zhang L, Li Y, Zhang L, Li D-W, Karpuzov D, Long Y-T (2011) Int J Electrochem Sci 6:819–829

    Google Scholar 

  111. Shana C, Yang H, Han D, Zhang Q, Ivaska A, Li N (2010) Biosens Bioelectron 25:1504

    Article  CAS  Google Scholar 

  112. Wu K, Fei J, Hu S (2003) Anal Biochem 318:100

    Article  CAS  Google Scholar 

  113. SI Units for Clinical Data. The following table provides factors for converting conventional units to SI units for selected clinical data. Source: JAMA Author Instructions

  114. Zhao Y, Gao Y, Zhan D, Liu H, Zhao Q, Kou Y, Shao Y, Li M, Zhuang Q, Zhu Z (2005) Talanta 66:51

    Article  CAS  Google Scholar 

  115. Safavi A, Maleki N, Moradlou O, Tajabadi F (2006) Anal Biochem 359:224

    Article  CAS  Google Scholar 

  116. Valentini F, Roscioli D, Carbone M, Conte V, Floris B, Palleschi G, Flammini R, Bauer EM, Nasillo G, Caponetti E (2012) Anal Chem 84:5823–5831

    Article  CAS  Google Scholar 

  117. Katsyuba S, Zvereva A, Vidiš E, Dyson APJ (2007) J Phys Chem A 111:352–370

    Article  CAS  Google Scholar 

  118. Bard J, Faulkner L R, Wiley (1980) ISBN 0-471-05542-5

  119. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, Ruoff RS (2007) Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  120. Si Y, Samulski ET (2008) Nano Lett 8(6):1679–1682

    Article  CAS  Google Scholar 

  121. Park S, Lee K-S, Bozoklu G, Cai W, Nguyen SBT, Ruoff RS (2008) ACS Nano 2(3):572–578

    Article  CAS  Google Scholar 

  122. Jeong H-K, Lee Y-P, Jin MH, Kim ES, Bae JJ, Lee YH (2009) Chem Phys Lett 470:255–258

    Article  CAS  Google Scholar 

  123. Katsyuba SA, Zvereva EE, Vidiš A, Dyson PJ (2007) J Phys Chem A 111:352–370

    Article  CAS  Google Scholar 

  124. Barroso MF, De-Los-Santos-Alvarez N, Delerue-Matos C, Oliveira MBPP (2011) Biosens Bioelectron 30:1–12

    Article  CAS  Google Scholar 

  125. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Nano Lett 8(10):3498–3502

    Article  CAS  Google Scholar 

  126. McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prudhomme RK, Aksay IA (2007) Chem Mater 19(18):4396–4404

    Article  CAS  Google Scholar 

  127. McCreery R (2008) Chem Rev 108:2646–2687

    Article  CAS  Google Scholar 

  128. Rochefort A, Wuest JD (2009) Langmuir 25:210–215

    Article  CAS  Google Scholar 

  129. Banhart F, Kotakoski J, Krasheninnikov AV (2011) ACS Nano 5:26–41

    Article  CAS  Google Scholar 

  130. Duncan TV (2011) J Colloid Interface Sci 363:1–24

    Article  CAS  Google Scholar 

  131. Yina H, Zhou Y, Ma Q, Ai S, Chen Q, Zhu L (2010) Talanta 82:1193–1199

    Article  CAS  Google Scholar 

  132. Roco M C, Mirkin CA, Hersam MC (Eds.) (2010) Nanotechnology Research Directions for Societal Needs in 2020: Retrospective and Outlook, World Technology Evaluation Center (WTEC) and the National Science Foundation (NSF), Springer.http://www.wtec.org/nano2/Nanotechnology_Research_Directions_to_2020 (accessed 29.06.11)

  133. Cobb MD, Macoubrie J (2004) J Nanopart Res 6:395

    Article  Google Scholar 

  134. Currall SC, King EB, Lane N, Madera J, Turner S (2006) Nature Nanotechnol 1:153

    Article  CAS  Google Scholar 

  135. Castellini OM, Walejko GK, Holladay CE, Theim TJ, Zenner GM, Crone WC (2007) J Nanopart Res 9:183

    Article  Google Scholar 

  136. Satterfield T, Kandlikar M, Beaudrie CEH, Conti J, Harthorn BH (2009) Nature Nanotechnol 4:752

    Article  CAS  Google Scholar 

  137. Siegrist M, Keller C, Kastenholz H, Frey S, Wiek A (2007) Risk Anal 27:59

    Article  Google Scholar 

  138. Market Attitude Research Services, Australian Community Attitudes about Nanotechnology – 2005–2009, Department of Industry, Innovation, Science and Research, Australia, 2009

  139. Hart Research Associates, Awareness of and Attitudes Toward Nanotechnology and Federal Regulatory Agencies, Washington, DC, 2007. http://www.pewtrusts.org/our_work_report_detail.aspx (accessed 29.06.11)

  140. International Risk Governance Council, Policy Brief: Appropriate Risk Governance Strategies for Nanotechnology Applications in Food and Cosmetics, Geneva Siwtzerland,2009.<http://www.irgc.org/IMG/pdf/irgc_nanotechnologies_food_and_cosmetics_policy_brief.pdf> (accessed 28.07.11)

  141. Sanvicens N, Pastells C, Pascual N, Marco M-P (2009) Trends Anal Chem 28:1243

    Article  CAS  Google Scholar 

  142. Innovative Research and Products Inc., Nano-enabled Packaging for the Food and Beverage Industry – A Global Technology, Industry and Market Analysis, 2009. <http://www.innoresearch.net/report_summary.aspx2009> (accessed 11.05.11)

  143. Market Attitude Research Services, Australian Community Attitudes about Nanotechnology – 2005–2009, Department of Industry, Innovation, Science and Research, Australia, 2009

  144. Siegrist M, Cousin M-E, Kastenholz H, Wiek A (2007) Appetite 49:459

    Article  Google Scholar 

  145. Siegrist M, Stampfli N, Kastenholz H, Keller C (2008) Appetite 51:283

    Article  Google Scholar 

  146. Zhu S, Tang S, Zhang J, Yang B (2012) Chem Commun 48:4527–4539

    Article  CAS  Google Scholar 

  147. http://www.ripesense.com; and shttp://www.onvu.com/

  148. Wang L, Chen W, Xu D, Shim BS, Zhu Y, Sun F, Liu L, Peng C, Jin Z, Xu C, Kotov NA (2009) Nano Lett 9:4147

    Article  CAS  Google Scholar 

  149. Zhang Y, Zhang X, Lu X, Yang J, Wu K (2010) Food Chem 122:909

    Article  CAS  Google Scholar 

  150. Mo Z, Zhang Y, Zhao F, Xiao F, Guo G, Zeng B (2010) Food Chem 121:233

    Article  CAS  Google Scholar 

  151. Crevillén AG, Ávila M, Pumera M, González MC, Escarpa A (2007) Anal Chem 79:7408

    Article  CAS  Google Scholar 

  152. Wei D, Bailey MJA, Andrew P, Ryhänen T (2009) Lab Chip 9:2123

    Article  CAS  Google Scholar 

  153. Smolander M, Hurme E, Ahvenainen R (1997) Trends Food Sci Technol 8:101

    Article  CAS  Google Scholar 

  154. Arndt GW (2008) Leak testing. In: Yam KL (ed) The wiley encyclopedia of packaging technology, 3rd edn. Wiley, New York

    Google Scholar 

  155. Mills A (2005) Chem Soc Rev 34:1003

    Article  CAS  Google Scholar 

  156. Luechinger NA, Loher S, Athanassiou EK, Grass RN, Stark WJ (2007) Langmuir 23:3473

    Article  CAS  Google Scholar 

  157. Mills A, Hazafy D (2009) Sens Actuators B 136:344

    Article  CAS  Google Scholar 

  158. Hernández-Jover T, Izquierdo-Pulido M, Veciana-Nogués MT, Vidal-Carou MC (1996) J Agric Food Chem 44:2710

    Article  Google Scholar 

  159. Valentini F, Biagiotti V, Lete C, Palleschi G, Wang J (2007) Sensors Actuators B Chem 128(1):326–333

    Article  CAS  Google Scholar 

  160. Biagiotti V, Valentini F, Tamburri E, Terranova ML, Moscone D, Palleschi G (2007) Sensors Actuators B Chem 122(1):236–242

    Article  CAS  Google Scholar 

  161. Morris G (2011) Emerg Infect Dis 17:126

    Article  Google Scholar 

  162. Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM (2011) Emerg Infect Dis 17:16

    Article  Google Scholar 

  163. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M-A, Roy SL, Jones JL, Griffin PM (2011) Emerg Infect Dis 17:7

    Google Scholar 

  164. International Risk Governance Council, Policy Brief: Appropriate Risk Governance Strategies for Nanotechnology Applications in Food and Cosmetics, Geneva, Siwtzerland,2009.<http://www.irgc.org/IMG/pdf/irgc_nanotechnologies_food_and_cosmetics_policy_brief.pdf> (accessed 28.07.11)

  165. Heo J, Hua SZ (2009) Sensors 9:4483

    Article  CAS  Google Scholar 

  166. Tallury P, Malhotra A, Byrne LM, Santra S (2010) Adv Drug Deliv Rev 62:424

    Article  CAS  Google Scholar 

  167. Fluit AC, Torensma R, Visser MJC, Aarsman CJM, Poppelier MJJG, Keller BHI, Klapwijk P, Verhoef J (1993) Appl Environ Microbiol 59:1289

    CAS  Google Scholar 

  168. Yang H, Qu L, Wimbrow AN, Jiang X, Sun Y (2007) Int J Food Microbiol 118:132

    Article  CAS  Google Scholar 

  169. Varshney M, Yang L, Su X-L, Li Y (2005) J Food Prot 68:1804

    CAS  Google Scholar 

  170. Iijima S, Yudasaka M et al (1999) Chem Phys Lett 309:165–170

    Article  CAS  Google Scholar 

  171. Iijima S (2002) Phys B Cond Matt 323:(1–4) (1–5)

  172. Lin Y, Lu F, Tu Y, Ren Z (2004) Nano Lett 4:191–195

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Valentini.

Additional information

Published in the topical collection Amperometric Sensing with guest editors Renato Seeber, Fabio Terzi, and Chiara Zanardi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 750 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valentini, F., Carbone, M. & Palleschi, G. Graphene oxide nanoribbons (GNO), reduced graphene nanoribbons (GNR), and multi-layers of oxidized graphene functionalized with ionic liquids (GO–IL) for assembly of miniaturized electrochemical devices. Anal Bioanal Chem 405, 3449–3474 (2013). https://doi.org/10.1007/s00216-012-6615-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6615-1

Keywords

Navigation