Skip to main content

Advertisement

Log in

Analytical methods for the determination of halogens in bioanalytical sciences: a review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fluorine, chlorine, bromine, and iodine have been studied in biological samples and other related matrices owing to the need to understand the biochemical effects in living organisms. In this review, the works published in last 20 years are covered, and the main topics related to sample preparation methods and analytical techniques commonly used for fluorine, chlorine, bromine, and iodine determination in biological samples, food, drugs, and plants used as food or with medical applications are discussed. The commonest sample preparation methods, as extraction and decomposition using combustion and pyrohydrolysis, are reviewed, as well as spectrometric and electroanalytical techniques, spectrophotometry, total reflection X-ray fluorescence, neutron activation analysis, and separation systems using chromatography and electrophoresis. On this aspect, the main analytical challenges and drawbacks are highlighted. A discussion related to the availability of certified reference materials for evaluation of accuracy is also included, as well as a discussion of the official methods used as references for the determination of halogens in the samples covered in this review.

Methods commonly used for determination of F, Cl, Br, and I in samples relevant to bioanalytical sciences

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AAS:

Atomic absorption spectrometry

CE:

Capillary electrophoresis

CRM:

Certified reference material

CS-AAS:

Continuum source atomic absorption spectrometry

CS-MAS:

Continuum source molecular absorption spectrometry

CZE:

Capillary zone electrophoresis

GC:

Gas chromatography

HR-ICP-MS:

High-resolution inductively coupled plasma mass spectrometry

IC:

Ion chromatography

ICP:

Inductively coupled plasma

INAA:

Instrumental neutron activation analysis

ISE:

Ion-selective electrode

LC:

Liquid chromatography

LOD:

Limit of detection

MAS:

Molecular absorption spectrometry

MIC:

Microwave-induced combustion

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

NAA:

Neutron activation analysis

OES:

Optical emission spectrometry

TMAH:

Tetramethylammonium hydroxide

TXRF:

Total reflection X-ray fluorescence

UV:

Ultraviolet

UV–vis:

Ultraviolet–visible

References

  1. Burtis CA, Geary TD (1994) Glossary of bioanalytical nomenclature. 1. General terminology, body-fluids, enzymology, immunology. Pure Appl Chem 66(12):2587–2604. doi:10.1351/pac199466122587

    CAS  Google Scholar 

  2. Kole PL, Venkatesh G, Kotecha J, Sheshala R (2011) Recent advances in sample preparation techniques for effective bioanalytical methods. Biomed Chromatogr 25(1–2):199–217. doi:10.1002/bmc.1560

    CAS  Google Scholar 

  3. Anderson NL, Polanski M, Pieper R, Gatlin T, Tirumalai RS, Conrads TP, Veenstra TD, Adkins JN, Pounds JG, Fagan R, Lobley A (2004) The human plasma proteome—a nonredundant list developed by combination of four separate sources. Mol Cell Proteomics 3(4):311–326. doi:10.1074/mcp.M300127-MCP200

    CAS  Google Scholar 

  4. Shelor CP, Dasgupta PK (2011) Review of analytical methods for the quantification of iodine in complex matrices. Anal Chim Acta 702(1):16–36. doi:10.1016/j.aca.2011.05.039

    CAS  Google Scholar 

  5. Spuznar J, Bouyssiere B, Lobinski R (2003) Sample preparation for speciation analysis for metallobiomolecules. In: Mester Z, Sturgeon R (eds) Sample preparation for trace elements analysis, vol XLI. Elsevier, Amsterdam, pp 1185–1210

    Google Scholar 

  6. Codex Alimentarius Commission (2003) Joint FAO/WHO Food Standards Programme, Rome. http://www.who.int/foodsafety/codex/en/

  7. Moreda-Pineiro A, Romaris-Hortas V, Bermejo-Barrera P (2011) A review on iodine speciation for environmental, biological and nutrition fields. J Anal At Spectrom 26(11):2107–2152. doi:10.1039/c0ja00272k

    CAS  Google Scholar 

  8. Sommariva R, von Glasow R (2012) Multiphase halogen chemistry in the tropical Atlantic Ocean. Environ Sci Technol 46(19):10429–10437. doi:10.1021/es300209f

    CAS  Google Scholar 

  9. Zimmermann MB, Jooste PL, Pandav CS (2008) Iodine-deficiency disorders. Lancet 372(9645):1251–1262. doi:10.1016/s0140-6736(08)61005-3

    CAS  Google Scholar 

  10. World Health Organization (2001) Assessment of iodine deficiency disorders and monitoring their elimination - a guide for programme managers. World Health Organization, Geneva

    Google Scholar 

  11. Prystupa J (2011) Fluorine—a current literature review. An NRC and ATSDR based review of safety standards for exposure to fluorine and fluorides. Toxicol Mech Methods 21(2):103–170. doi:10.3109/15376516.2010.542931

    CAS  Google Scholar 

  12. Ekambaram M, Itthagarun A, King NM (2011) Ingestion of fluoride from dentifrices by young children and fluorosis of the teeth - a literature review. J Clin Pediatr Dent 36(2):111–121

    CAS  Google Scholar 

  13. Evans RB (2005) Chlorine: state of the art. Lung 183(3):151–167. doi:10.1007/s00408-004-2530-3

    CAS  Google Scholar 

  14. Vos JG, Becher G, van den Berg M, de Boer J, Leonards PEG (2003) Brominated flame retardants and endocrine disruption. Pure Appl Chem 75(11–12):2039–2046. doi:10.1351/pac200375112039

    CAS  Google Scholar 

  15. Gron C, Dybdahl HP (1996) Determination of total organic halogens (TOX); bias from a non-halogenated organic compound. Environ Int 22(3):325–329. doi:10.1016/0160-4120(96)00018-9

    Google Scholar 

  16. Kortagere S, Ekins S, Welsh WJ (2008) Halogenated ligands and their interactions with amino acids: implications for structure-activity and structure-toxicity relationships. J Mol Graph Model 27(2):170–177. doi:10.1016/j.jmgm.2008.04.001

    CAS  Google Scholar 

  17. Flores EMM, Muller EI, Duarte FA, Grinberg P, Sturgeon RE (2013) Determination of trace elements in fluoropolymers after microwave-induced combustion. Anal Chem 85(1):374–380. doi:10.1021/ac3029213

    CAS  Google Scholar 

  18. Wuilloud RG, Altamirano JC (2005) Speciation of halogen compounds. In: Cornelis R, Caruso J, Crews H, Heumann K (eds) Handbook of elemental speciation II—species in the environment, food, medicine and occupational health. Wiley, Chichester, pp 564–597

    Google Scholar 

  19. Matusiewicz H (2003) Wet digestion methods. In: Mester Z, Sturgeon R (eds) Sample preparation for trace elements analysis, vol XLI. Elsevier, Amsterdam, pp 193–233

    Google Scholar 

  20. Krengel-Rothensee K, Richter U, Heitland P (1999) Low-level determination of non-metals (Cl, Br, I, S, P) in waste oils by inductively coupled plasma optical emission spectrometry using prominent spectral lines in the 130–190 nm range. J Anal At Spectrom 14(4):699–702. doi:10.1039/a807024e

    CAS  Google Scholar 

  21. Naozuka J, Mesquita Silva da Veiga MA, Oliveira PV, de Oliveira E (2003) Determination of chlorine, bromine and iodine in milk samples by ICP-OES. J Anal At Spectrom 18(8):917–921. doi:10.1039/b303897c

    CAS  Google Scholar 

  22. Freeman JE, Hieftje GM (1985) Analytical characteristics of near-infrared nonmetal atomic emission froma helium microwave-induced plasma. Spectrochim Acta Part B At Spectrosc 40(3):475–492. doi:10.1016/0584-8547(85)80086-0

    Google Scholar 

  23. Michlewicz KG, Carnahan JW (1986) Determination of aqueous bromide, iodide, and chloride with pneumatic and ultrasonic nebulization into a helium microwave-induced plasma. Anal Chem 58(14):3122–3125. doi:10.1021/ac00127a045

    CAS  Google Scholar 

  24. Joint FAO/WHO Expert Consultation on Human Vitamin and Mineral Requirements (2004) Vitamin and mineral requirements in human nutrition, 2nd edn. World Health Organization, Geneva, and Food and Agriculture Organization of the United Nations, Rome

  25. Andersen ME, Butenhoff JL, Chang SC, Farrar DG, Kennedy GL, Lau C, Olsen GW, Seed J, Wallacekj KB (2008) Perfluoroalkyl acids and related chemistries—toxicokinetics and modes of action. Toxicol Sci 102(1):3–14. doi:10.1093/toxsci/kfm270

    CAS  Google Scholar 

  26. Dunitz JD (2004) Organic fluorine: odd man out. ChemBioChem 5(5):614–621. doi:10.1002/cbic.200300801

    CAS  Google Scholar 

  27. Rodriguez E, Moreno-Bondi MC, Marazuela MD (2011) Multiresidue determination of fluoroquinolone antimicrobials in baby foods by liquid chromatography. Food Chem 127(3):1354–1360. doi:10.1016/j.foodchem.2011.01.098

    CAS  Google Scholar 

  28. Whyatt RM, Rauh V, Barr DB, Camann DE, Andrews HF, Garfinkel R, Hoepner LA, Diaz D, Dietrich J, Reyes A, Tang DL, Kinney PL, Perera FP (2004) Prenatal insecticide exposures and birth weight and length among an urban minority cohort. Environ Health Perspect 112(10):1125–1132. doi:10.1289/ehp.6641

    CAS  Google Scholar 

  29. Consonni D, Sindaco R, Bertazzi PA (2012) Blood levels of dioxins, furans, dioxin-like PCBs, and TEQs in general populations: a review, 1989–2010. Environ Int 44:151–162. doi:10.1016/j.envint.2012.01.004

    CAS  Google Scholar 

  30. Krasner SW, Weinberg HS, Richardson SD, Pastor SJ, Chinn R, Sclimenti MJ, Onstad GD, Thruston AD (2006) Occurrence of a new generation of disinfection byproducts. Environ Sci Technol 40(23):7175–7185. doi:10.1021/es060353j

    CAS  Google Scholar 

  31. Lag M, Soderlund EJ, Omichinski JG, Brunborg G, Holme JA, Dahl JE, Nelson SD, Dybing E (1991) Effect of bromine and chlorine positioning in the induction of renal and testicular toxicity by halogenated propanes. Chem Res Toxicol 4(5):528–534

    CAS  Google Scholar 

  32. Capka V, Bowers CP, Narvesen JN, Rossi RE (2004) Determination of total fluorine in blood at trace concentration levels by the Wickbold decomposition method with direct potentiometric detection. Talanta 64(4):869–878. doi:10.1016/j.talanta.2004.03.066

    CAS  Google Scholar 

  33. Miyahara T, Ogai F, Kitamura H, Narita K, Takino Y, Toyo’oka T (1998) Determination of fluorine in organic compounds by potentiometric titration with aluminum chloride solution combined with oxygen flask combustion. Anal Sci 14(6):1145–1147. doi:10.2116/analsci.14.1145

    CAS  Google Scholar 

  34. Dressler VL, Pozebon D, Flores ELM, Paniz JNG, Flores EMM (2002) Potentiometric determination of fluoride in geological and biological samples following pyrohydrolytic decomposition. Anal Chim Acta 466(1):117–123. doi:10.1016/s0003-2670(02)00550-0

    CAS  Google Scholar 

  35. Krishna MVB, Rao SV, Murthy VSN, Karunasagar D (2012) A simple UV-photolysis digestion method for the determination of fluoride in fluorine-containing drugs by ion-selective electrode and spectrophotometry techniques. Anal Methods 4(6):1565–1572. doi:10.1039/c2ay05718b

    CAS  Google Scholar 

  36. Havranek V, Kucera J, Randa Z, Vosecek V (2004) Comparison of fluorine determination in biological and environmental samples by NAA, PAA and PIXE. J Radioanal Nucl Chem 259(2):325–329. doi:10.1023/B:JRNC.0000017312.00776.e5

    CAS  Google Scholar 

  37. Venkateswarlu P, Lacroix MA, Kirsch GW (1993) Determination of organic (covalent) fluorine in blood-serum by furnace molecular absorption spectrometry. Microchem J 48(1):78–85. doi:10.1006/mchj.1993.1074

    CAS  Google Scholar 

  38. Gleisner H, Einax JW, Mores S, Welz B, Carasek E (2011) A fast and accurate method for the determination of total and soluble fluorine in toothpaste using high-resolution graphite furnace molecular absorption spectrometry and its comparison with established techniques. J Pharm Biomed Anal 54(5):1040–1046. doi:10.1016/j.jpba.2010.12.013

    CAS  Google Scholar 

  39. Mores S, Monteiro GC, Santos FD, Carasek E, Welz B (2011) Determination of fluorine in tea using high-resolution molecular absorption spectrometry with electrothermal vaporization of the calcium mono-fluoride CaF. Talanta 85(5):2681–2685. doi:10.1016/j.talanta.2011.08.044

    CAS  Google Scholar 

  40. Kruger M, Huang MD, Becker-Ross H, Florek S, Ott I, Gust R (2012) Quantification of the fluorine containing drug 5-fluorouracil in cancer cells by GaF molecular absorption via high-resolution continuum source molecular absorption spectrometry. Spectrochim Acta Part B At Spectrosc 69:50–55. doi:10.1016/j.sab.2012.02.004

    Google Scholar 

  41. Ozbek N, Akman S (2012) Method development for the determination of fluorine in toothpaste via molecular absorption of aluminum mono fluoride using a high-resolution continuum source nitrous oxide/acetylene flame atomic absorption spectrophotometer. Talanta 94:246–250. doi:10.1016/j.talanta.2012.03.034

    CAS  Google Scholar 

  42. Miyake Y, Yamashita N, So MK, Rostkowski P, Taniyasu S, Lam PKS, Kannan K (2007) Trace analysis of total fluorine in human blood using combustion ion chromatography for fluorine: a mass balance approach for the determination of known and unknown organofluorine compounds. J Chromatogr A 1154(1–2):214–221. doi:10.1016/j.chroma.2007.03.084

    CAS  Google Scholar 

  43. Yeung LWY, Miyake B, Li P, Taniyasu S, Kannan K, Guruge KS, Lam PKS, Yamashita N (2009) Comparison of total fluorine, extractable organic fluorine and perfluorinated compounds in the blood of wild and pefluorooctanoate (PFOA)-exposed rats: evidence for the presence of other organofluorine compounds. Anal Chim Acta 635(1):108–114. doi:10.1016/j.aca.2009.01.004

    CAS  Google Scholar 

  44. Zaporozhets OA, Tsyukalo LY (2007) Determination of fluoride and oxalate using the indicator reaction of Zr(IV) with methylthymol blue adsorbed on silica gel. Anal Chim Acta 597(1):171–177. doi:10.1016/j.aca.2007.06.029

    CAS  Google Scholar 

  45. Li HB, Xu XR (1999) Separation and determination of fluoride in plant samples. Talanta 48(1):57–62. doi:10.1016/s0039-9140(98)00225-2

    CAS  Google Scholar 

  46. Huang MD, Becker-Ross H, Florek S, Heitmann U, Okruss M (2006) Determination of halogens via molecules in the air-acetylene flame using high-resolution continuum source absorption spectrometry, part II: chlorine. Spectrochim Acta Part B At Spectrosc 61(8):959–964. doi:10.1016/j.sab.2006.08.004

    Google Scholar 

  47. Fechetia M, Tognon AL, da Veiga M (2012) Determination of chlorine in food samples via the AlCl molecule using high-resolution continuum source molecular absorption spectrometry in a graphite furnace. Spectrochim Acta Part B At Spectrosc 71–72:98–101. doi:10.1016/j.sab.2012.04.003

    Google Scholar 

  48. Novic M, Dovzan A, Pihlar B, Hudnik V (1995) Determination of chlorine, sulfur and phosphorus in organic materials by ion chromatography using electrodialysis sample pretreatment. J Chromatogr A 704(2):530–534. doi:10.1016/0021-9673(95)00105-v

    CAS  Google Scholar 

  49. Suarez-Luque S, Mato I, Huidobro JF, Simal-Lozano J, Sancho MT (2006) Capillary zone electrophoresis method for the determination of inorganic anions and formic acid in honey. J Agric Food Chem 54(25):9292–9296. doi:10.1021/jf061536s

    CAS  Google Scholar 

  50. Merchant M (2009) Miniaturization of a chloride ion assay for use in a microtiter format. Microchem J 92(1):80–82. doi:10.1016/j.microc.2009.01.002

    CAS  Google Scholar 

  51. Huang MD, Becker-Ross H, Florek S, Heitmann U, Okruss M (2008) High-resolution continuum source electrothermal absorption spectrometry of AlBr and CaBr for the determination of bromine. Spectrochim Acta Part B At Spectrosc 63(5):566–570. doi:10.1016/j.sab.2008.02.005

    Google Scholar 

  52. Huang YY, Wu YR, Zhao LM, Li GC, He W, Yuan LZ, Chen JP, Li JF, Zhang TC, Cao EH (2001) Beijing synchrotron radiation total-reflection X-ray fluorescence analysis facility and its applications on trace element study of cells. Spectrochim Acta Part B At Spectrosc 56(11):2057–2062

    Google Scholar 

  53. Baso-Cejas E, Brito G, Diaz C, Pena-Mendez EM (2007) Determination of inorganic bromide content in several vegetable foods. Bull Environ Contam Toxicol 78(5):417–420. doi:10.1007/s00128-007-9212-9

    CAS  Google Scholar 

  54. Di Narda F, Toniolo R, Susmel S, Pizzariello A, Bontempelli G (2003) A comparison among different instrumental approaches for bromide analysis in foodstuffs digested by a suitably modified microwave procedure. Talanta 60(4):653–662. doi:10.1016/s0039-9140(03)00146-2

    Google Scholar 

  55. Gelinas Y, Iyengar GV, Barnes RM (1998) Total iodine in nutritional and biological reference materials using neutron activation analysis and inductively coupled plasma mass spectrometry. Fresenius J Anal Chem 362(5):483–488. doi:10.1007/s002160051111

    CAS  Google Scholar 

  56. Knapp G, Maichin B, Fecher P, Hasse S, Schramel P (1998) Iodine determination in biological materials - options for sample preparation and final determination. Fresenius J Anal Chem 362(6):508–513. doi:10.1007/s002160051116

    CAS  Google Scholar 

  57. Schramel P, Hasse S (1994) Iodine determination in biological-materials by ICP-MS. Mikrochim Acta 116(4):205–209. doi:10.1007/bf01260366

    CAS  Google Scholar 

  58. Mesko MF, Mello PA, Bizzi CA, Dressler VL, Knapp G, Flores EMM (2010) Iodine determination in food by inductively coupled plasma mass spectrometry after digestion by microwave-induced combustion. Anal Bioanal Chem 398(2):1125–1131. doi:10.1007/s00216-010-3766-9

    CAS  Google Scholar 

  59. Vtorushina EA, Saprykin AI, Knapp G (2009) Use of oxidation and reduction vapor generation for lowering the detection limits of iodine in biological samples by inductively coupled plasma atomic emission spectrometry. J Anal Chem 64(2):129–135. doi:10.1134/s1061934809020063

    CAS  Google Scholar 

  60. Shinoda T, Miyamoto N, Kuromoto T, Ito K, Morikawa H, Okamoto Y, Fujiwara T, Hirokawa T (2012) Pyrohydrolysis coupled to ion chromatography for sensitive determination of iodine in food-related materials. Anal Lett 45(8):862–871. doi:10.1080/00032719.2012.655659

    CAS  Google Scholar 

  61. Niedobova E, Machat J, Otruba V, Kanicky V (2005) Vapour generation inductively coupled plasma optical emission spectrometry in determination of total iodine in milk. J Anal At Spectrom 20(9):945–949. doi:10.1039/b504525h

    CAS  Google Scholar 

  62. Grinberg P, Sturgeon RE (2009) Ultra-trace determination of iodine in sediments and biological material using UV photochemical generation-inductively coupled plasma mass spectrometry. Spectrochim Acta Part B At Spectrosc 64(3):235–241. doi:10.1016/j.sab.2009.01.013

    Google Scholar 

  63. Yebra MC, Bollain MH (2010) A simple indirect automatic method to determine total iodine in milk products by flame atomic absorption spectrometry. Talanta 82(2):828–833. doi:10.1016/j.talanta.2010.05.067

    CAS  Google Scholar 

  64. Duan YX, Zhang HQ, Jiang XM, Jin QH (1996) A simple, innovative method for the determination of iodide by using gas-phase molecular absorption spectrometry after volatile species evolution. Spectrosc Lett 29(1):69–85. doi:10.1080/00387019608001582

    CAS  Google Scholar 

  65. Bermejo-Barrera P, Aboal-Somoza M, Bermejo-Barrera A, Cervera ML, de la Guardia M (2001) Microwave-assisted distillation of iodine for the indirect atomic absorption spectrometric determination of iodide in milk samples. J Anal At Spectrom 16(4):382–389. doi:10.1039/b100368m

    CAS  Google Scholar 

  66. Bermejo-Barrera P, Anllo-Sendin RM, Aboal-Somoza M, Bermejo-Barrera A (1999) Contribution to the development of indirect atomic absorption methods: application of the ion pair 1,10-phenanthroline-mercury(II)-iodide to iodide determination in water and infant formulae samples. Mikrochim Acta 131(3–4):145–151. doi:10.1007/s006040050020

    CAS  Google Scholar 

  67. Bermejo-Barrera P, Fernandez-Sanchez LM, Aboal-Somoza M, Anllo-Sendin RM, Bermejo-Barrera A (2001) Indirect atomic absorption spectrometry (IAAS) as a tool for the determination of iodide in infant formulas by precipitation of AgI and redissolution with cyanide. Microchem J 69(3):205–211. doi:10.1016/s0026-265x(01)00089-3

    CAS  Google Scholar 

  68. Huang MD, Becker-Ross H, Florek S, Okruss M, Welz B, Mores S (2009) Determination of iodine via the spectrum of barium mono-iodide using high-resolution continuum source molecular absorption spectrometry in a graphite furnace. Spectrochim Acta Part B At Spectrosc 64(7):697–701. doi:10.1016/j.sab.2009.06.010

    Google Scholar 

  69. Das P, Gupta M, Jain A, Verma KK (2004) Single drop microextraction or solid phase microextraction-gas chromatography-mass spectrometry for the determination of iodine in pharmaceuticals, iodized salt, milk powder and vegetables involving conversion into 4-iodo-N,N-dimethylaniline. J Chromatogr A 1023(1):33–39. doi:10.1016/j.chroma.2003.09.056

    CAS  Google Scholar 

  70. Fecher PA, Goldmann I, Nagengast A (1998) Determination of iodine in food samples by inductively coupled plasma mass spectrometry after alkaline extraction. J Anal At Spectrom 13(9):977–982. doi:10.1039/a801671b

    CAS  Google Scholar 

  71. Melichercik J, Szijarto L, Hill AR (2006) Comparison of ion-specific electrode and high performance liquid chromatography methods for the determination of iodide in milk. J Dairy Sci 89(3):934–937

    CAS  Google Scholar 

  72. Pereira FC, Moretto LM, De Leo M, Zanoni MVB, Ugo P (2006) Gold nanoelectrode ensembles for direct trace electroanalysis of iodide. Anal Chim Acta 575(1):16–24. doi:10.1016/j.aca.2006.05.056

    CAS  Google Scholar 

  73. Nikolic SD, Mutic JJ, Lolic AD, Manojlovic DD (2005) Sensitive flow-injection amperometric detection of iodide using Mn3+ and As3+. Anal Sci 21(5):525–529. doi:10.2116/analsci.21.525

    CAS  Google Scholar 

  74. Isaac-Olive K, Chatt A (2012) Studies of total, organic and inorganic iodine in Canadian bovine milk samples with varying milk fat content using ion-exchange chromatography and neutron activation analysis. J Radioanal Nuclear Chem 294(3):479–486. doi:10.1007/s10967-012-1849-0

    CAS  Google Scholar 

  75. Varga I (2007) Iodine determination in dietary supplement products by TXRF and ICP-AES spectrometry. Microchem J 85(1):127–131. doi:10.1016/j.microc.2006.06.014

    CAS  Google Scholar 

  76. Pantuckova P, Urbanek M, Krivankova L (2007) Determination of iodide in samples with complex matrices by hyphenation of capillary isotachophoresis and zone electrophoresis. Electrophoresis 28(20):3777–3785. doi:10.1002/elps.200700189

    CAS  Google Scholar 

  77. Fallouch S, Lejeune PJ, Barbaria J, Carayon P, Mallet B (2004) Urinary iodine analysis: an alternative method for digestion of urine samples. Clin Chem 50(4):780–782. doi:10.1373/clinchem.2003.029066

    CAS  Google Scholar 

  78. El-Ries MA, Khaled E, Zidane FI, Ibrahim SA, Abd-Elmonem MS (2012) Catalytic spectrophotometric determination of iodide in pharmaceutical preparations and edible salt. Drug Test Anal 4(2):129–135. doi:10.1002/dta.253

    CAS  Google Scholar 

  79. Shishehbore MR, Sheibani A, Jokar R (2010) Kinetic spectrophotometric determination of trace amounts of iodide in food samples. Anal Sci 26(4):497–501

    CAS  Google Scholar 

  80. Tomiyasu T, Nonaka M, Uchikado M, Anazawa K, Sakamoto H (2004) Kinetic determination of total iodine in urine and foodstuffs using a mixed acid as a pretreatment agent. Anal Sci 20(2):391–393. doi:10.2116/analsci.20.391

    CAS  Google Scholar 

  81. Langenauer M, Krahenbuhl U, Wyttenbach A (1993) Determination of fluorine and iodine in biological-materials. Anal Chim Acta 274(2):253–256. doi:10.1016/0003-2670(93)80473-x

    CAS  Google Scholar 

  82. Butcher DJ (1993) Determination of fluorine, chlorine, and bromine by molecular absorption spectrometry. Microchem J 48(3):303–317. doi:10.1006/mchj.1993.1104

    CAS  Google Scholar 

  83. Muller ALH, Muller CC, Antes FG, Barin JS, Dressler VL, Flores EMM, Muller EI (2012) Determination of bromine, chlorine, and fluorine in cigarette tobacco by ion chrometography after microwave-induced combustion. Anal Lett 45(9):1004–1015. doi:10.1080/00032719.2012.670800

    CAS  Google Scholar 

  84. Schnetger B, Muramatsu Y (1996) Determination of halogens, with special reference to, iodine, in geological and biological samples using pyrohydrolysis for preparation and inductively coupled plasma mass spectrometry and ion chromatography for measurement. Analyst 121(11):1627–1631. doi:10.1039/an9962101627

    CAS  Google Scholar 

  85. Matsuura H, Hasegawa T, Nagata H, Takatani K, Asano M, Itoh A, Haraguchi H (2003) Speciation of small molecules and inorganic ions in salmon egg cell cytoplasm by surfactant-mediated HPLC/ICP-MS. Anal Sci 19(1):117–121. doi:10.2116/analsci.19.117

    CAS  Google Scholar 

  86. Muller ALH, Bizzi CA, Pereira JSF, Mesko MF, Moraes DP, Flores EMM, Muller EI (2011) Bromine and chlorine determination in cigarette tobacco using microwave-induced combustion and inductively coupled plasma optical emission spectrometry. J Braz Chem Soc 22(9):1649–1655

    CAS  Google Scholar 

  87. Jackson PE, Haddad PR (1993) Capillary eletrciphoresis of inorganic-ions and low-molecular-mass ionic solutes. Trends Anal Chem 12(6):231–238. doi:10.1016/0165-9936(93)87062-3

    CAS  Google Scholar 

  88. Barbosa JTP, Santos CMM, Bispo LS, Lyra FH, David JM, Korn MGA, Flores EMM (2012) Bromine, chlorine, and iodine determination in soybean and its products by ICP-MS after digestion using microwave-induced combustion. Food Anal Methods. doi:10.1007/s12161-012-9511-6

    Google Scholar 

  89. Putschew A, Keppler F, Jekel M (2003) Differentiation of the halogen content of peat samples using ion chromatography after combustion (TX/TOX-IC). Anal Bioanal Chem 375(6):781–785. doi:10.1007/s00216-003-1797-1

    CAS  Google Scholar 

  90. Tagami K, Uchida S, Hirai I, Tsukada H, Takeda H (2006) Determination of chlorine, bromine and iodine in plant samples by inductively coupled plasma-mass spectrometry after leaching with tetramethyl ammonium hydroxide under a mild temperature condition. Anal Chim Acta 570(1):88–92. doi:10.1016/j.aca.2006.04.011

    CAS  Google Scholar 

  91. Muller ALH, Mello PA, Mesko MF, Duarte FA, Dressler VL, Muller EI, Flores EMM (2012) Bromine and iodine determination in active pharmaceutical ingredients by ICP-MS. J Anal At Spectrom 27(11):1889–1894. doi:10.1039/c2ja30212h

    CAS  Google Scholar 

  92. Romaris-Hortas V, Bermejo-Barrera P, Moreda-Pineiro A (2012) Development of anion-exchange/reversed-phase high performance liquid chromatography-inductively coupled plasma-mass spectrometry methods for the speciation of bio-available iodine and bromine from edible seaweed. J Chromatogr A 1236:164–176. doi:10.1016/j.chroma.2012.03.019

    CAS  Google Scholar 

  93. Romaris-Hortas V, Bermejo-Barrera P, Moreda-Pineiro J, Moreda-Pineiro A (2012) Speciation of the bio-available iodine and bromine forms in edible seaweed by high performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry. Anal Chim Acta 745:24–32. doi:10.1016/j.aca.2012.07.035

    CAS  Google Scholar 

  94. Romaris-Hortas V, Garcia-Sartal C, Barciela-Alonso MD, Dominguez-Gonzalez R, Moreda-Pineiro A, Bermejo-Barrera P (2011) Bioavailability study using an in-vitro method of iodine and bromine in edible seaweed. Food Chem 124(4):1747–1752. doi:10.1016/j.foodchem.2010.07.117

    CAS  Google Scholar 

  95. Rose M, Miller P, Baxter M, Appleton G, Crews H, Croasdale M (2001) Bromine and iodine in 1997 UK total diet study samples. J Environ Monit 3(4):361–365. doi:10.1039/b105695f

    CAS  Google Scholar 

  96. Romaris-Hortas V, Moreda-Pineiro A, Bermejo-Barrera P (2009) Microwave assisted extraction of iodine and bromine from edible seaweed for inductively coupled plasma-mass spectrometry determination. Talanta 79(3):947–952. doi:10.1016/j.talanta.2009.05.036

    CAS  Google Scholar 

  97. Pavelka S, Vobecky M, Babicky A (2008) Halogen speciation in the rat thyroid: simultaneous determination of bromine and iodine by short-term INAA. J Radioanal Nucl Chem 278(3):575–579. doi:10.1007/s10967-008-1008-9

    CAS  Google Scholar 

  98. Xu Z, Doi T, Timerbaev AR, Hirokawa T (2008) Sensitive determination of anions in saliva using capillary electrophoresis after transient isotachophoretic preconcentration. Talanta 77(1):278–281. doi:10.1016/j.talanta.2008.06.017

    CAS  Google Scholar 

  99. Chen JH, Wang KE, Jiang SJ (2007) Determination of iodine and bromine compounds in foodstuffs by CE-inductively coupled plasma MS. Electrophoresis 28(22):4227–4232. doi:10.1002/elps.200700241

    CAS  Google Scholar 

  100. Bhagat PR, Acharya R, Nair AGC, Pandey AK, Rajurkar NS, Reddy AVR (2009) Estimation of iodine in food, food products and salt using ENAA. Food Chem 115(2):706–710. doi:10.1016/j.foodchem.2008.11.092

    CAS  Google Scholar 

  101. Martinez T, Lartigue J, Zarazua G, Avila-Perez P, Navarrete M, Tejeda S (2008) Application of the total reflection X-ray fluorescence technique to trace elements determination in tobacco. Spectrochim Acta Part B At Spectrosc 63(12):1469–1472. doi:10.1016/j.sab.2008.10.008

    Google Scholar 

  102. Stephens WE, Calder A (2004) Analysis of non-organic elements in plant foliage using polarised X-ray fluorescence spectrometry. Anal Chim Acta 527(1):89–96. doi:10.1016/j.aca.2004.08.015

    CAS  Google Scholar 

  103. Seo JH, Guillong M, Aerts M, Zajacz Z, Heinrich CA (2011) Microanalysis of S, Cl, and Br in fluid inclusions by LA-ICP-MS. Chem Geol 284(1–2):35–44. doi:10.1016/j.chemgeo.2011.02.003

    CAS  Google Scholar 

  104. Dressler VL, Antes FG, Moreira CM, Pozebon D, Duarte FA (2011) As, Hg, I, Sb, Se and Sn speciation in body fluids and biological tissues using hyphenated-ICP-MS techniques: a review. Int J Mass Spectrom 307(1–3):149–162. doi:10.1016/j.ijms.2011.01.026

    CAS  Google Scholar 

  105. Dudoit A, Pergantis SA (2001) Ion chromatography in series with conductivity detection and inductively coupled plasma-mass spectrometry for the determination of nine halogen, metalloid and non-metal species in drinking water. J Anal At Spectrom 16(6):575–580. doi:10.1039/b100783l

    CAS  Google Scholar 

  106. Cataldi TRI, Rubino A, Ciriello R (2005) Sensitive quantification of iodide by ion-exchange chromatography with electrochemical detection at a modified platinum electrode. Anal Bioanal Chem 382(1):134–141. doi:10.1007/s00216-005-3187-3

    CAS  Google Scholar 

  107. Zhuang WS, McKague B, Reeve D, Carey J (2003) Erratum to “Identification and confirmation of traces of chlorinated fatty acids in fish downstream of bleached kraft pulp mills by gas chromatography with halogen-specific detection” (vol 994, pg 137, 2003). J Chromatogr A 1007(1–2):211. doi:10.1016/s0021-9673(03)00982-8

    CAS  Google Scholar 

  108. Haldimann M, Eastgate A, Zimmerli B (2000) Improved measurement of iodine in food samples using inductively coupled plasma isotope dilution mass spectrometry. Analyst 125(11):1977–1982. doi:10.1039/b005879n

    CAS  Google Scholar 

  109. Crescenzi C, Bayoudh S, Cormack PAG, Klein T, Ensing K (2001) Determination of clenbuterol in bovine liver by combining matrix solid phase dispersion and molecularly imprinted solid phase extraction followed by liquid chromatography/electrospray ion trap multiple stage mass spectrometry. Anal Chem 73(10):2171–2177. doi:10.1021/ac0014360

    CAS  Google Scholar 

  110. Gelinas Y, Krushevska A, Barnes RM (1998) Determination of total iodine in nutritional and biological samples by ICP-MS following their combustion within an oxygen stream. Anal Chem 70(5):1021–1025. doi:10.1021/ac970974i

    CAS  Google Scholar 

  111. Muller ALH, Muller CC, Lyra FH, Mello PA, Mesko MF, Muller EI, Flores EMM (2013) Determination of toxic elements in nuts by inductively coupled plasma mass spectrometry after microwave-induced combustion. Food Anal Methods 6(1):258–264. doi:10.1007/s12161-012-9381-y

    Google Scholar 

  112. Fernandez A, Murillo M, Carrion N, Mermet JM (1994) Influence of operating-conditions on the effects of acids in inductively-coupled plasma-atomic emission-spectrometry. J Anal At Spectrom 9(3):217–221. doi:10.1039/ja9940900217

    CAS  Google Scholar 

  113. Todoli JL, Mermet JM (1999) Acid interferences in atomic spectrometry: analyte signal effects and subsequent reduction. Spectrochim Acta Part B At Spectrosc 54(6):895–929. doi:10.1016/s0584-8547(99)00041-5

    Google Scholar 

  114. Souza GB, Carrilho E, Oliveira CV, Nogueira ARA, Nobrega JA (2002) Oxygen bomb combustion of biological samples for inductively coupled plasma optical emission spectrometry. Spectrochim Acta Part B At Spectrosc 57(12):2195–2201. doi:10.1016/s0584-8547(02)00180-5

    Google Scholar 

  115. Duarte FA, Pereira JSF, Barin JS, Masko MF, Dressler VL, Flores EMM, Knapp G (2009) Seafood digestion by microwave-induced combustion for total arsenic determination by atomic spectrometry techniques with hydride generation. J Anal At Spectrom 24(2):224–227. doi:10.1039/b810952d

    CAS  Google Scholar 

  116. Gu F, Marchetti AA, Straume T (1997) Determination of iodine in milk and oyster tissue samples using combustion and peroxydisulfate oxidation. Analyst 122(6):535–537. doi:10.1039/a607555j

    CAS  Google Scholar 

  117. Lambert DF, Turoczy NJ (2000) Comparison of digestion methods for the determination of selenium in fish tissue by cathodic stripping voltammetry. Anal Chim Acta 408(1–2):97–102. doi:10.1016/s0003-2670(99)00795-3

    CAS  Google Scholar 

  118. Flores EMM, Barin JS, Mesko MF, Knapp G (2007) Sample preparation techniques based on combustion reactions in closed vessels - a brief overview and recent applications. Spectrochim Acta Part B At Spectrosc 62(9):1051–1064. doi:10.1016/j.sab.2007.04.018

    Google Scholar 

  119. Magalhães CEC, Flores EMM, Krug FJ, Barin JS, Mesko MF (2010) Decomposição de materiais orgânicos por combustão. In: Krug FJ (ed) Métodos de preparo de amostras: fundamentos sobre preparo de amostras orgânicas einorgânicas para análise elementar. Seção Técnica de Biblioteca - CENA/USP, Piracicaba, pp 184–251

    Google Scholar 

  120. Pereira JSF, Pereira LSF, Schmidt L, Moreira CM, Barin JS, Flores EMM (2013) Metals determination in milk powder samples for adult and infant nutrition after focused-microwave induced combustion. Microchem J 109:29–35. doi:10.1016/j.microc.2012.05.010

    CAS  Google Scholar 

  121. Mesko MF, Moraes DP, Barin JS, Dressler VL, Knapp G, Flores EMM (2006) Digestion of biological materials using the microwave-assisted sample combustion technique. Microchem J 82(2):183–188. doi:10.1016/j.microc.2006.01.004

    CAS  Google Scholar 

  122. Barin JS, Bartz FR, Dressler VL, Paniz JNG, Flores EMM (2008) Microwave-induced combustion coupled to flame furnace atomic absorption spectrometry for determination of cadmium and lead in botanical samples. Anal Chem 80(23):9369–9374. doi:10.1021/ac8015714

    CAS  Google Scholar 

  123. Barin JS, Pereira JSF, Mello PA, Knorr CL, Moraes DP, Mesko MF, Nobrega JA, Korn MGA, Flores EMM (2012) Focused microwave-induced combustion for digestion of botanical samples and metals determination by ICP OES and ICP-MS. Talanta 94:308–314. doi:10.1016/j.talanta.2012.03.048

    CAS  Google Scholar 

  124. Picoloto RS, Wiltsche H, Knapp G, Barin JS, Flores EMM (2012) Mercury determination in soil by CVG-ICP-MS after volatilization using microwave-induced combustion. Anal Methods 4(3):630–636. doi:10.1039/c1ay05410d

    CAS  Google Scholar 

  125. Flores EMM, Muller EI, Duarte FA, Grinberg P, Sturgeon RE (2012) Determination of trace elements in fluoropolymers after microwave-induced combustion. Anal Chem 85(1):374–380. doi:10.1021/ac3029213

    Google Scholar 

  126. Pereira JSF, Mello PA, Duarte FA, Santos MDP, Guimaraes RCL, Knapp G, Dressler VL, Flores EMM (2009) Feasibility of microwave-induced combustion for digestion of crude oil vacuum distillation residue for chlorine determination. Energy Fuel 23:6015–6019. doi:10.1021/ef900707n

    CAS  Google Scholar 

  127. Pereira JSF, Diehl LO, Duarte FA, Santos MFP, Guimaraes RCL, Dressler VL, Flores EMM (2008) Chloride determination by ion chromatography in petroleum coke after digestion by microwave-induced combustion. J Chromatogr A 1213(2):249–252. doi:10.1016/j.chroma.2008.10.079

    CAS  Google Scholar 

  128. Pereira JSF, Mello PA, Moraes DP, Duarte FA, Dressler VL, Knapp G, Flores EMM (2009) Chlorine and sulfur determination in extra-heavy crude oil by inductively coupled plasma optical emission spectrometry after microwave-induced combustion. Spectrochim Acta Part B At Spectrosc 64(6):554–558. doi:10.1016/j.sab.2009.01.011

    Google Scholar 

  129. Flores EMM, Mesko MF, Moraes DP, Pereira JSF, Mello PA, Barin JS, Knapp G (2008) Determination of halogens in coal after digestion using the microwave-induced combustion technique. Anal Chem 80(6):1865–1870. doi:10.1021/ac8000836

    CAS  Google Scholar 

  130. Pereira JSF, Antes FG, Diehl LO, Knorr CL, Mortari SR, Dressler VL, Flores EMM (2010) Microwave-induced combustion of carbon nanotubes for further halogen determination. J Anal At Spectrom 25(8):1268–1274. doi:10.1039/c003116j

    CAS  Google Scholar 

  131. Moraes DP, Pereira JSF, Diehl LO, Mesko MF, Dressler VL, Paniz JNG, Knapp G, Flores EMM (2010) Evaluation of sample preparation methods for elastomer digestion for further halogens determination. Anal Bioanal Chem 397(2):563–570. doi:10.1007/s00216-010-3478-1

    CAS  Google Scholar 

  132. Taflik T, Duarte FA, Flores ELM, Antes FG, Paniz JNG, Flores EMM, Dressler VL (2012) Determination of bromine, fluorine and iodine in mineral supplements using pyrohydrolysis for sample preparation. J Braz Chem Soc 23(3):488–495

    CAS  Google Scholar 

  133. Antes FG, Pereira JSF, Spadoa LC, Muller EI, Flores EMM, Dressler VL (2012) Fluoride determination in carbon nanotubes by ion selective electrode. J Braz Chem Soc 23(6):1193–1198

    CAS  Google Scholar 

  134. Antes FG, Duarte FA, Flores ELM, Paniz JNG, Flores EMM, Dressler VL (2010) Fluoride and chloride determination in fossil fuels after sample preparation by pyrohydrolysis. Quim Nova 33(5):1130–1134. doi:10.1590/s0100-40422010000500024

    CAS  Google Scholar 

  135. Dressler VL, Pozebon D, Flores ELM, Paniz JNG, Flores EMM (2003) Determination of fluoride in coal using pyrohydrolysis for analyte separation. J Braz Chem Soc 14(2):334–338

    CAS  Google Scholar 

  136. Flores ELM, Barin JS, Flores EMM, Dressler VL (2007) A new approach for fluorine determination by solid sampling graphite furnace molecular absorption spectrometry. Spectrochim Acta Part B At Spectros 62(9):918–923. doi:10.1016/j.sab.2007.05.010

    Google Scholar 

  137. Welz B, Mores S, Carasek E, Vale MGR, Okruss M, Becker-Ross H (2010) High-resolution continuum source atomic and molecular absorption spectrometry - a review. Appl Spectrosc Rev 45(5):327–354. doi:10.1080/05704928.2010.483669

    CAS  Google Scholar 

  138. Fender MA, Butcher DJ (1995) Comparison of deuterium arc and Smith-Hieftje background correction for graphite furnace molecular absorption spectrometry of fluoride and chloride. Anal Chim Acta 315(1–2):167–176. doi:10.1016/0003-2670(95)00305-j

    CAS  Google Scholar 

  139. Antes FG, Pereira JSF, Enders MSP, Moreira CMM, Muller EI, Flores EMM, Dressler VL (2012) Pyrohydrolysis of carbon nanotubes for Br and I determination by ICP-MS. Microchem J 101:54–58. doi:10.1016/j.microc.2011.10.005

    CAS  Google Scholar 

  140. Bu XD, Wang TB, Hall G (2003) Determination of halogens in organic compounds by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). J Anal At Spectrom 18(12):1443–1451. doi:10.1039/b306570g

    CAS  Google Scholar 

  141. Houseaux J, Mermet JM (2000) Use of a charge-coupled device detector in the 120-190 nm range in axially-viewed inductively coupled plasma atomic emission spectrometry. J Anal At Spectrom 15(8):979–982. doi:10.1039/b003626i

    CAS  Google Scholar 

  142. Oliveira AA, Nobrega JA, Pereira ER, Trevizan LC (2012) Evaluation of ICP OES with axial or radial views for determination of iodine in table salt. Quim Nova 35(7):1299–U1302

    CAS  Google Scholar 

  143. Wheal MS, Palmer LT (2010) Chloride analysis of botanical samples by ICP-OES. J Anal At Spectrom 25(12):1946–1952. doi:10.1039/c0ja00059k

    CAS  Google Scholar 

  144. Mena ML, Agui L, Martinez-Ruiz P, Yanez-Sedeno P, Reviejo AJ, Pingarron JM (2003) Molecularly imprinted polymers for on-line clean up and preconcentration of chloramphenicol prior to its voltammetric determination. Anal Bioanal Chem 376(1):18–25. doi:10.1007/s00216-003-1846-9

    CAS  Google Scholar 

  145. Jahn S, Karst U (2012) Electrochemistry coupled to (liquid chromatography/) mass spectrometry—current state and future perspectives. J Chromatogr A 1259:16–49. doi:10.1016/j.chroma.2012.05.066

    CAS  Google Scholar 

  146. Dick JG (1997) Electroanalytical techniques: principles and applications. In: Paré JRJ, Bélanger JMR (eds) Techniques and instrumentation in analytical chemistry, vol 18. Elsevier, Amsterdam, pp 267–365

    Google Scholar 

  147. Lindner E, Pendley BD (2012) A tutorial on the application of ion-selective electrode potentiometry: an analytical method with unique qualities, unexplored opportunities and potential pitfalls. Anal Chim Acta 762:1–13. doi:10.1016/j.aca.2012.11.022

    Google Scholar 

  148. Felix FS, Angnes L (2010) Fast and accurate analysis of drugs using amperometry associated with flow injection analysis. J Pharm Sci 99(12):4784–4804. doi:10.1002/jps.22192

    CAS  Google Scholar 

  149. Cataldi TRI, Rubino A, Laviola MC, Ciriello R (2005) Comparison of silver, gold and modified platinum electrodes for the electrochemical detection of iodide in urine samples following ion chromatography. J Chromatogr B Anal Technol Biomed Life Sci 827(2):224–231. doi:10.1016/j.jchromb.2005.09.017

    CAS  Google Scholar 

  150. Jooste PL, Strydom E (2010) Methods for determination of iodine in urine and salt. Best Prac Res Clin Endocrinol Metab 24(1):77–88. doi:10.1016/j.beem.2009.08.006

    CAS  Google Scholar 

  151. Gamallo-Lorenzo D, Barciela-Alonso MD, Moreda-Pineiro A, Bermejo-Barrera A, Bermejo-Barrera P (2005) Microwave-assisted alkaline digestion combined with microwave-assisted distillation for the determination of iodide and total iodine in edible seaweed by catalytic spectrophotometry. Anal Chim Acta 542(2):287–295. doi:10.1016/j.aca.2005.04.002

    CAS  Google Scholar 

  152. Zhang YP, Yuan DX, Chen JX, Lan TS, Chen HQ (1996) Spectrophotometric determination of urinary iodine by flow injection analysis with online catalytic reaction. Clin Chem 42:2021–2027

    Google Scholar 

  153. Mazzarella C, Terracciano D, Di Carlo A, Macchia PE, Consiglio E, Macchia V, Mariano A (2009) Iodine status assessment in Campania (Italy) as determined by urinary iodine excretion. Nutrition 25(9):926–929. doi:10.1016/j.nut.2009.01.020

    CAS  Google Scholar 

  154. Gultepe M, Ozcan O, Ipcioglu OM (2005) Assessment of iodine intake in mildly iodine-deficient pregnant women by a new automated kinetic urinary iodine determination method. Clin Chem Lab Med 43(3):280–284. doi:10.1515/cclm.2005.047

    Google Scholar 

  155. Mina A, Favaloro EJ, Koutts J (2011) A robust method for testing urinary iodine using a microtitre robotic system. J Trace Elem Med Biol 25(4):213–217. doi:10.1016/j.jtemb.2011.09.001

    CAS  Google Scholar 

  156. Ohashi T, Yamaki M, Pandav CS, Karmarkar MG, Irie M (2000) Simple microplate method for determination of urinary iodine. Clin Chem 46(4):529–536

    CAS  Google Scholar 

  157. O’Kennedy R, Keating P (1993) The optimisation of a novel iodide microassay and its application in an immunoassay for human antibody levels in serum. J Immunol Methods 163(2):225–231

    Google Scholar 

  158. Pena-Pereira F, Lavilla I, Bendicho C (2009) Headspace single-drop microextraction coupled to microvolume UV-vis spectrophotometry for iodine determination. Anal Chim Acta 631(2):223–228. doi:10.1016/j.aca.2008.10.048

    CAS  Google Scholar 

  159. Nacapricha D, Uraisin K, Ratanawimarnwong N, Grudpan K (2004) Simple and selective method for determination of iodide in pharmaceutical products by flow injection analysis using the iodine–starch reaction. Anal Bioanal Chem 378(3):816–821. doi:10.1007/s00216-003-2370-7

    CAS  Google Scholar 

  160. International Atomic Energy Agency (2004) Analytical applications of nuclear techniques. International Atomic Energy Agency, Vienna

    Google Scholar 

  161. Filby R (1995) Part IX. Neutron activation analysis. Pure Appl Chem 67:1929–1941

    CAS  Google Scholar 

  162. Gerard JT, Pietruszewski JL (1978) Determination of halogens by activation-analysis with a CF-252 neutron multiplier. Anal Chem 50(7):906–910. doi:10.1021/ac50029a022

    CAS  Google Scholar 

  163. Contis ET (2000) Use of nuclear techniques for the measurement of trace elements in food. J Radioanal Nucl Chem 243(1):53–58. doi:10.1023/a:1006707011685

    CAS  Google Scholar 

  164. Manninen PKG, Hasanen E (1993) Use of neutron-activation analysis in determination of total organic chlorine and bromine. J Radioanal Nucl Chem 167(2):353–360. doi:10.1007/bf02037193

    CAS  Google Scholar 

  165. Klockenkamper R, von Bohlen A (1999) Survey of sampling techniques for solids suitable for microanalysis by total-reflection X-ray fluorescence spectrometry. J Anal At Spectrom 14(4):571–576. doi:10.1039/a807693f

    CAS  Google Scholar 

  166. Jenkins R, Gould RW, Gedcke D (1995) Quantitative X-ray spectrometry. Dekker, New York

    Google Scholar 

  167. Marco LAP, Hernandez-Caraballo EA (2004) Direct analysis of biological samples by total reflection X-ray fluorescence. Spectrochim Acta Part B At Spectrosc 59(8):1077–1090. doi:10.1016/j.sab.2004.05.017

    Google Scholar 

  168. Jimenez REA (2001) Total reflection X-ray fluorescence spectrometers for multielement analysis: status of equipment. Spectrochim Acta Part B At Spectrosc 56(11):2331–2336

    Google Scholar 

  169. Meirer ASF, Pepponi G, Streli C, Homma T, Pianetta P (2010) Synchrotron radiation-induced total reflection X-ray fluorescence analysis. Trends Anal Chem 29:479–486

    CAS  Google Scholar 

  170. Tarsoly G, Ovari M, Zaray G (2010) Determination of fluorine by total reflection X-ray fluorescence spectrometry. Spectrochim Acta Part B At Spectrosc 65(4):287–290. doi:10.1016/j.sab.2010.02.019

    Google Scholar 

  171. Polgari Z, Szoboszlai N, Ovari M, Zaray G (2011) Possibilities and limitations of the total reflection X-ray fluorescence spectrometry for the determination of low Z elements in biological samples. Microchem J 99(2):339–343. doi:10.1016/j.microc.2011.06.002

    CAS  Google Scholar 

  172. Marco LM, Capote T, Hernandez EA, Greaves ED (2001) Feasibility study on in situ microwave digestion prior to analysis of biological samples by total reflection X-ray fluorescence. Spectrochim Acta Part B At Spectrosc 56(11):2187–2193. doi:10.1016/s0584-8547(01)00296-8

    Google Scholar 

  173. Peters HL, Jones BT (2003) Determination of non-metals by high performance liquid chromatography with inductively coupled plasma detection. Appl Spectrosc Rev 38(1):71–99. doi:10.1081/asr-120018182

    CAS  Google Scholar 

  174. de Vlieger JSB, Giezen MJN, Falck D, Tump C, van Heuveln F, Giera M, Kool J, Lingeman H, Wieling J, Honing M, Irth H, Niessen WMA (2011) High temperature liquid chromatography hyphenated with ESI-MS and ICP-MS detection for the structural characterization and quantification of halogen containing drug metabolites. Anal Chim Acta 698(1–2):69–76. doi:10.1016/j.aca.2011.04.053

    Google Scholar 

  175. Ackley KL, Caruso JA (2003) Separations techniques: liquid chromatography. In: Cornelis R (ed) Handbook of elemental speciation: techniques and methodology. Wiley, Chichester, pp 147–162

    Google Scholar 

  176. Heftmann E (2004) Chromatography: fundamentals and applications of chromatography and related differential migration methods. Elsevier, Oxford

    Google Scholar 

  177. Carr JE, Dill AE, Kwok K, Carnahan JW, Webster GK (2008) LC-ICP-MS for nonmetal selective detection of pharmaceuticals. Curr Pharm Anal 4(4):206–214. doi:10.2174/157341208786306234

    CAS  Google Scholar 

  178. D’Ulivo A, Pagliano E, Onor M, Pitzalis E, Zamboni R (2009) Vapor generation of inorganic anionic species after aqueous phase alkylation with trialkyloxonium tetrafluoroborates. Anal Chem 81(15):6399–6406. doi:10.1021/ac900865d

    Google Scholar 

  179. Pagliano E, Meija J, Ding J, Sturgeon RE, D’Ulivo A, Mester Z (2013) Novel ethyl-derivatization approach for the determination of fluoride by headspace gas chromatography/mass spectrometry. Anal Chem 85(2):877–881. doi:10.1021/ac302303r

    CAS  Google Scholar 

  180. Kuhn R, Hoffstetter-Kuhn S (1993) Capillary electrophoresis: principles and practice. Springer, Heidelberg

    Google Scholar 

  181. Kaniansky D, Masar M, Marak J, Bodor R (1999) Capillary electrophoresis of inorganic anions. J Chromatogr A 834(1–2):133–178. doi:10.1016/s0021-9673(98)00789-4

    CAS  Google Scholar 

  182. Prest JE, Baldock SJ, Fielden PR, Goddard NJ, Mohr S, Brown BJT (2006) Rapid chloride analysis using miniaturised isotachophoresis. J Chromatogr A 1119(1–2):183–187. doi:10.1016/j.chroma.2005.11.030

    CAS  Google Scholar 

  183. Harakuwe AH, Haddad PR (2001) Manipulation of separation selectivity in capillary zone electrophoresis of anionic solutes. Trends Anal Chem 20:375–385

    CAS  Google Scholar 

  184. Timerbaev AR, Hirokawa T (2006) Recent advances of transient isotachophoresis-capillary electrophoresis in the analysis of small ions from high-conductivity matrices. Electrophoresis 27(1):323–340. doi:10.1002/elps.200500320

    CAS  Google Scholar 

  185. Bjergegaard C, Moller P, Sorensen H (1995) Determination of thiocyanate, iodide, nitrate and nitrite in biological samples by micellar electrokinetic capillary chromatography. J Chromatogr A 717(1–2):409–414. doi:10.1016/0021-9673(95)00554-1

    CAS  Google Scholar 

  186. Suntornsuk L (2010) Recent advances of capillary electrophoresis in pharmaceutical analysis. Anal Bioanal Chem 398(1):29–52. doi:10.1007/s00216-010-3741-5

    CAS  Google Scholar 

  187. Timerbaev AR (2009) Capillary electrophoresis coupled to mass spectrometry for biospeciation analysis: critical evaluation. Trends Anal Chem 28(4):416–425. doi:10.1016/j.trac.2009.02.001

    CAS  Google Scholar 

  188. Standler A, Koellensperger G, Buchberger W, Stingeder G, Hann S (2007) Determination of chloroplatinates by CE coupled to inductively coupled plasma sector field MS. Electrophoresis 28(19):3492–3499. doi:10.1002/elps.200700097

    CAS  Google Scholar 

  189. Li J, Ding W, Fritz JS (2000) Separation of anions by ion chromatography–capillary electrophoresis. J Chromatogr A 879:245–257

    CAS  Google Scholar 

  190. Huang Z, Ito K, Timerbaev AR, Hirokawa T (2004) Speciation studies by capillary electrophoresis - simultaneous determination of iodide and iodate in seawater. Anal Bioanal Chem 378(7):1836–1841. doi:10.1007/s00216-004-2506-4

    CAS  Google Scholar 

  191. Haumann I, Boden J, Mainka A, Jegle U (2000) Simultaneous determination of inorganic anions and cations by capillary electrophoresis with indirect UV detection. J Chromatogr A 895:269–277

    CAS  Google Scholar 

  192. Quirino JP, Terabe S (2000) Sample stacking of cationic and anionic analytes in capillary electrophoresis. J Chromatogr A 902:119–135

    CAS  Google Scholar 

  193. Michalke B, Schramel P (1999) Iodine speciation in biological samples by capillary electrophoresis-inductively coupled plasma mass spectrometry. Electrophoresis 20:2547–2553

    CAS  Google Scholar 

  194. Timerbaev AR (2008) Inorganic analysis of biological fluids using capillary electrophoresis. J Sep Sci 31(11):2012–2021. doi:10.1002/jssc.200800036

    CAS  Google Scholar 

  195. Kupiec K, Konieczka P, Namisenik J (2009) Prospects for the production, research and utilization of reference materials. Crit Rev Anal Chem 39(4):311–322. doi:10.1080/10408340903253182

    CAS  Google Scholar 

  196. Priel M, Amarouche S, Fisicaro P (2009) Metrological traceability is not always a straight line. Accred Qual Assur 14(11):593–599. doi:10.1007/s00769-009-0540-9

    Google Scholar 

  197. Bode P, Fernandes EAD, Greenberg RR (2000) Metrology for chemical measurements and the position of INAA. J Radioanal Nucl Chem 245(1):109–114. doi:10.1023/a:1006752509734

    CAS  Google Scholar 

  198. Park K, Min H, Yim Y-H, Yim Y-L, Hwang E-J, Cho K (2011) Instrumental neutron activation analysis (INAA) and isotope dilution-inductively coupled plasma mass spectrometry (ID-ICP/MS) for certification of multielements in a tuna fish candidate certified reference material. J Food Compos Anal 24(7):1064–1068. doi:10.1016/j.jfca.2011.01.009

    CAS  Google Scholar 

  199. United States Pharmacopeial Convention (2012) United States pharmacopeia 35 – national formulary 30. United States Pharmacopeial Convention, Rockville

    Google Scholar 

  200. Council of Europe (2011) European pharmacopeia, 7th edn. Council of Europe, Strasbourg

    Google Scholar 

  201. AOAC International (2012) Official methods of analysis of AOAC International, 19th edn. AOAC International, Gaithersburg

    Google Scholar 

  202. Agência Nacional de Vigilância Sanitária (2010) Farmacopeia Brasileira, 5th edn. Agência Nacional de Vigilância Sanitária, Brasília

    Google Scholar 

  203. Mesko MF, Pereira JSF, Moraes DP, Barin JS, Mello PA, Paniz JNG, Nobrega JA, Korn MGA, Flores EMM (2010) Focused microwave-induced combustion: a new technique for sample digestion. Anal Chem 82(5):2155–2160. doi:10.1021/ac902976j

    CAS  Google Scholar 

  204. Kataoka H, Tanaka S, Konishi C, Okamoto Y, Fujiwara T, Ito K (2008) Sensitive determination of bromine and iodine in aqueous and biological samples by electrothermal vaporization inductively coupled plasma mass spectrometry using tetramethylammonium hydroxide as a chemical modifier. Rapid Commun Mass Spectrom 22(12):1792–1798. doi:10.1002/rcm.3549

    CAS  Google Scholar 

  205. Okamoto Y (2001) Determination of fluorine in aqueous samples by electrothermal vaporisation inductively coupled plasma mass spectrometry (ETV-ICP-MS). J Anal At Spectrom 16(6):539–541. doi:10.1039/b101969o

    CAS  Google Scholar 

  206. Konz I, Fernandez B, Fernandez ML, Pereiro R, Sanz-Medel A (2012) Laser ablation ICP-MS for quantitative biomedical applications. Anal Bioanal Chem 403(8):2113–2125. doi:10.1007/s00216-012-6023-6

    CAS  Google Scholar 

  207. Dressler VL, Pozebon D, Mesko MF, Matusch A, Kumtabtim U, Wu B, Becker JS (2010) Biomonitoring of essential and toxic metals in single hair using on-line solution-based calibration in laser ablation inductively coupled plasma mass spectrometry. Talanta 82(5):1770–1777. doi:10.1016/j.talanta.2010.07.065

    CAS  Google Scholar 

  208. St-Onge L, Kwong E, Sabsabi M, Vadas EB (2002) Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy. Spectrochim Acta Part B At Spectros 57(7):1131–1140. doi:10.1016/S0584-8547(02)00062-9

    Google Scholar 

  209. Santos D Jr, Nunes LC, Arantes de Carvalho GG, da Silva Gomes M, de Souza PF, de Oliviera Leme F, dos Santos LGC, Krug FJ (2012) Laser-induced breakdown spectroscopy for analysis of plant materials: a review. Spectrochim Acta Part B At Spectrosc 71–72:3–13. doi:10.1016/j.sab.2012.05.005

    Google Scholar 

  210. Pontes MJC, Cortez J, Galvao RKH, Pasquini C, Araujo MCU, Coelho RM, Chiba MK, de Abreu MF, Madari BE (2009) Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain. Analy Chim Acta 642(1–2):12–18. doi:10.1016/j.aca.2009.03.001

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq), Instituto Nacional de Ciência e Tecnologia de Bioanalítica (INCT-Bioanalítica), and Fundação de Apoio à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erico M. M. Flores.

Additional information

Published in the topical collection (Bio) Analytical Research in Latin America with guest editors Marco A. Zezzi Arruda and Lauro Kubota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mello, P.A., Barin, J.S., Duarte, F.A. et al. Analytical methods for the determination of halogens in bioanalytical sciences: a review. Anal Bioanal Chem 405, 7615–7642 (2013). https://doi.org/10.1007/s00216-013-7077-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7077-9

Keywords

Navigation