Skip to main content
Log in

Engineering a DNA-cleaving DNAzyme and PCR into a simple sensor for zinc ion detection

  • Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The development of a simple sensor (9NL27-Zn) based on DNAzyme and PCR and aimed at the detection of low concentrations of zinc (II) ions is described. A specific Zn(II)-dependent DNAzyme (9NL27) with DNA-cleaving activity was employed. In the presence of zinc (II), the DNAzyme hydrolyzed DNA substrate into two pieces (5′ and 3′ fragments), forming 3′-terminal hydroxyl in the 5′ fragment and 5′-phosphate in the 3′ fragments. Subsequently, the 5′ fragment left the DNAzyme and bound a short DNA template. The 5′ fragment was used as a primer and extended a single-stranded full-length template by Taq polymerase. Finally, this full-length template was amplified by PCR. The amplified products had a quantitative relationship with Zn(II) concentration. Under our experimental conditions, the DNA sensor showed sensitivity (10 nM) and high specificity for zinc ion detection. After improvement of the DNA sensor, the detection limit can reach 1 nM. The simple DNA sensor may become a DNA model for the detection of trace amounts of other targets.

The general principle of a 9NL27-Zn sensor by the combination of a Zn2+-dependent DNAzyme and PCR. The red arrowhead indicates the cleavage site of DNA substrate

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Breaker RR, Joyce GF (1994) A DNA enzyme that cleaves RNA. Chem Biol 1:223–229

    Article  CAS  Google Scholar 

  2. Santoro W, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A 94:4262–4266

    Article  CAS  Google Scholar 

  3. Roth A, Breaker RR (1998) An amino acid as a cofactor for a catalytic polynucleotide. Proc Natl Acad Sci U S A 95:6027–6031

    Article  CAS  Google Scholar 

  4. Cruz RPG, Withers JB, Li Y (2004) Dinucleotide junction cleavage versatility of 8-17 deoxyribozyme. Chem Biol 11:57–67

    Article  CAS  Google Scholar 

  5. Liu J, Brown AK, Meng X, Cropek DM, Istok JD, Watson DB, Lu Y (2007) A catalytic beacon sensor for uranium with parts-pertrillion sensitivity and millionfold selectivity. Proc Natl Acad Sci U S A 104:2056–2061

    Article  CAS  Google Scholar 

  6. Willner I, Shlyahovsky B, Zayats M, Willner B (2008) DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem Soc Rev 37:1153–1165

    Article  CAS  Google Scholar 

  7. Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998

    Article  CAS  Google Scholar 

  8. Dai N, Kool ET (2011) Fluorescent DNA-based enzyme sensors. Chem Soc Rev 40:5756–5770

    Article  CAS  Google Scholar 

  9. Zhang X, Kong R, Lu Y (2011) Metal ion sensors based on DNAzymes and related DNA molecules. Annu Rev Anal Chem 4:105–128

    Article  CAS  Google Scholar 

  10. Juskowiak B (2011) Nucleic acid-based fluorescent probes and their analytical potential. Anal Bioanal Chem 399:3157–3176

    Article  CAS  Google Scholar 

  11. Miao X, Ling L, Cheng D, Shuai X (2012) A highly sensitive sensor for Cu2+ with unmodified gold nanoparticles and DNAzyme by using the dynamic light scattering technique. Analyst 137:3064–3069

    Article  CAS  Google Scholar 

  12. Zhang H, Jiang B, Xiang Y, Su J, Chai Y, Yuan R (2011) DNAzyme-based highly sensitive electronic detection of lead via quantum dot-assembled amplification labels. Biosens Bioelectron 28:135–138

    Article  CAS  Google Scholar 

  13. Prasad AS (2013) Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr 4:176–190

    Article  CAS  Google Scholar 

  14. Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME (2012) Zinc and human health: an update. Arch Toxicol 86:521–534

    Article  CAS  Google Scholar 

  15. Mohammad MK, Zhou Z, Cave M, Barve A, McClain CJ (2012) Zinc and liver disease. Nutr Clin Pract 27:8–20

    Article  Google Scholar 

  16. Mocchegiani E, Malavolta M, Costarelli L, Giacconi R, Cipriano C, Piacenza F, Tesei S, Basso A, Pierpaoli S, Lattanzio F (2010) Zinc, metallothioneins and immunosenescence. Proc Nutr 69:290–299

    Article  CAS  Google Scholar 

  17. Chyan W, Zhang DY, Lippard SJ, Radford RJ (2014) Reaction-based fluorescent sensor for investigating mobile Zn2+ in mitochondria of healthy versus cancerous prostate cells. Proc Natl Acad Sci USA Advance Article

  18. Liu Y, Fei Q, Shan H, Cui M, Liu Q, Feng G,Huan Y (2014) A novel fluorescent ‘off-on-off’ probe for relay recognition of Zn2+ and Cu2+ derived from N,N-bis(2-pyridylmethyl)amine. Analyst Advance Article

  19. Chen M, Lv X, Liu Y, Zhao Y, Liu J, Wang P, Guo W (2011) An 2-(2’-aminophenyl)benzoxazole-based OFF-ON fluorescent chemosensor for Zn2+ in aqueous solution. Org Biomol Chem 9:2345–2349

    Article  CAS  Google Scholar 

  20. Ashokkumar P, Ramakrishnan VT, Ramamurthy P (2011) Photoinduced electron transfer (PET) based Zn2+ fluorescent probe: transformation of turn-on sensors into ratiometric ones with dual emission in acetonitrile. J Phys Chem A 115:14292–14299

    Article  CAS  Google Scholar 

  21. Buccella D, Horowitz JA, Lippard SJ (2011) Understanding zinc quantification with existing and advanced ditopic fluorescent Zinpyr sensors. J Am Chem Soc 133:4101–4114

    Article  CAS  Google Scholar 

  22. Chandra M, Sachdeva A, Silverman SK (2009) DNA-catalyzed sequence-specific hydrolysis of DNA. Nat Chem Biol 5:718–720

    Article  CAS  Google Scholar 

  23. Xiao Y, Allen EC, Silverman SK (2011) Merely two mutations switch a DNA-hydrolyzing deoxyribozyme from heterobimetallic (Zn2+/Mn2+) to monometallic (Zn2+-only) behavior. Chem Commun 47:1749–1751

    Article  CAS  Google Scholar 

  24. Gu H, Furukawa K, Weinberg Z, Berenson DF, Breaker RR (2013) Small, highly active DNAs that hydrolyze DNA. J Am Chem Soc 135:9121–9129

    Article  CAS  Google Scholar 

  25. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, Vessella RL, Tewari M (2013) Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 10:1003–1005

    Article  CAS  Google Scholar 

  26. Wang F, Wu Z, Lu Y, Wang J, Jiang J, Yu R (2010) A label-free DNAzyme sensor for lead(II) detection by quantitative polymerase chain reaction. Anal Biochem 405:168–173

    Article  CAS  Google Scholar 

  27. Todd AV, Fuery CJ, Impey HL, Applegate TL, Haughton MA (2000) DzyNA-PCR use of DNAzymes to detect and quantify nucleic acid sequences in a real-time fluorescent format. Clin Chem 46:625–630

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Fundamental Research Funds for Jilin University (200903096) and National Natural Science Foundation of China (31100573).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Zhang or Dazhi Jiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1911 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Sun, Y., Sheng, Y. et al. Engineering a DNA-cleaving DNAzyme and PCR into a simple sensor for zinc ion detection. Anal Bioanal Chem 406, 3025–3029 (2014). https://doi.org/10.1007/s00216-014-7732-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7732-9

Keywords

Navigation