Skip to main content
Log in

Preparation of candidate reference materials for the determination of phosphorus containing flame retardants in styrene-based polymers

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Candidate reference materials (RM) for the analysis of phosphorus-based flame retardants in styrene-based polymers were prepared using a self-made mini-extruder. Due to legal requirements of the current restriction for the use of certain hazardous substances in electrical and electronic equipment, focus now is placed on phosphorus-based flame retardants instead of the brominated kind. Newly developed analytical methods for the first-mentioned substances also require RMs similar to industrial samples for validation and verification purposes. Hence, the prepared candidate RMs contained resorcinol-bis-(diphenyl phosphate), bisphenol A bis(diphenyl phosphate), triphenyl phosphate and triphenyl phosphine oxide as phosphorus-based flame retardants. Blends of polycarbonate and acrylonitrile-co-butadiene-co-styrene as well as blends of high-impact polystyrene and polyphenylene oxide were chosen as carrier polymers. Homogeneity and thermal stability of the candidate RMs were investigated. Results showed that the candidate RMs were comparable to the available industrial materials. Measurements by ICP/OES, FTIR and NMR confirmed the expected concentrations of the flame retardants and proved that analyte loss and degradation, respectively, was below the uncertainty of measurement during the extrusion process. Thus, the candidate RMs were found to be suitable for laboratory use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Directive 2002/95/EC, 27 January 2003, Off J Eur Union L 37:19

  2. Directive 2002/96/EC, 27 January 2003, Off J Eur Union L 37:24

  3. Electrical and Electronic Equipment Act, 16 March 2005. Federal Law Gazette BGBl. I, p. 762–774

  4. Directive 2003/11/EC, 6 February 2003, Off J Eur Union L 42:45

  5. Commission Decision 2005/618/EC, 18 August 2005, Off J Eur Union L 214:65

  6. Judgment of the court (Grand Chamber) on 1 April 2008, http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:62006CJ0014&qid=1408523301714&from=EN. Accessed August 2014

  7. Directive 2011/65/EC, 8 June 2011, Off J Eur Union L 174:88

  8. Management Methods for Controlling Pollution by Electronic Information Products, 28 February 2006, http://www.rsjtechnical.com/images/Documents/China_RoHS_Order39.pdf. Accessed August 2014

  9. Act on the Resource Recycling of Electrical and Electronic Equipment and Vehicles, Law Nr. 8405, 27 April 2007, http://www.ecofrontier.com/eng/common/popup/file/Korean_RoHS_April_2007_Rev2.pdf. Accessed August 2014

  10. Hornberger M, Überblick über die weltweite Schadstoffgesetzgebung – RoHS weltweit, IPA Tagung, 17. März 2011, Fraunhofer-Institut IPA, Stuttgart, http://publica.fraunhofer.de/documents/N-156901.html. Accessed August 2014

  11. Döring M, Diederichs J, Bykov Y (Eds) Innovative Flame Retardants in E&E Applications, Karlsruhe Institute of Technology, 2010, http://www.pinfa.org/uploads/Documents/PINFA_EE_brochure_3rd_Edition_2010-11.pdf. Accessed August 2014

  12. van der Veen I, de Boer J (2012) Chemosphere 88:1119–1153

    Article  Google Scholar 

  13. van den Eede N, Dirtu AC, Neels H, Covaci A (2011) Environ Int 37(2):454–461

    Article  Google Scholar 

  14. Schindler BK, Förster K, Angerer J (2009) J Chrom B 877:375–381

    Article  CAS  Google Scholar 

  15. García-López M, Rodríguez I, Cela R (2008) Anal Chim Acta 625:145–153

    Article  Google Scholar 

  16. Chen D, Letcher RJ, Chu S (2012) J Chrom A 1220:169–174

    Article  CAS  Google Scholar 

  17. Bacaloni A, Cavaliere C, Foglia P, Nazzari M, Samperi R, Laganà A (2007) Rapid Commun Mass Spectrom 21:1123–1130

    Article  CAS  Google Scholar 

  18. Martínez-Carballo E, González-Barreiro C, Sitka A, Scharf S, Gans O (2007) Sci Total Environ 388:290–299

    Article  Google Scholar 

  19. Rodil R, Benito Quintana J, Reemtsma T (2005) Anal Chem 77:3083–3089

    Article  CAS  Google Scholar 

  20. Roth T, Urpi Bertran R, Pöhlein M, Wolf M, van Eldik R (2012) J Chrom A 1262:188–195

    Article  CAS  Google Scholar 

  21. Ballesteros-Gómez A, Brandsma SH, de Boer J, Leonards PEG (2014) Anal Bioanal Chem 406:2503–2512

    Article  Google Scholar 

  22. Polkowska-Motrenko H, Dybczyński RS, Chajduk E (2010) Accred Qual Assur 15:245–250

    Article  CAS  Google Scholar 

  23. COMAR International database of certified reference materials, http://www.comar.bam.de. Accessed August 2014

  24. Law RJ, Herzke D, Harrad S, Morris S, Bersuder P, Allchin CR (2008) Chemosphere 73:223–241

    Article  CAS  Google Scholar 

  25. van den Eede N, Dirtu AC, Ali N, Neels H, Covaci A (2012) Talanta 89:292–300

    Article  Google Scholar 

  26. Benito Quintana J (2008) TrAC-Trend Anal Chem 27:904–915

    Article  Google Scholar 

  27. Pöhlein M, Urpi Bertran R, Wolf M, van Eldik R (2009) Anal Bioanal Chem 394:583–595

    Article  Google Scholar 

  28. Ernst T, Popp R, van Eldik R (2000) Talanta 53:347–357

    Article  CAS  Google Scholar 

  29. Nölte J (2002) ICP-Emissionspektrometrie für Praktiker, 1st edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  30. Becke AD (1993) J Phys Chem 98:5648–5652

    Article  CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  32. Stephens PJ, Devlin FJ, Chabalwski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  33. Hehre WJ, Radom L, Schleyer P v R, Pople J (1986) Ab initio molecular orbital theory, 1st edn. Wiley-Interscience, New York

    Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc, Wallingford

    Google Scholar 

  35. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  36. Dosche C, Kumke MU, Ariese F, Bader AN, Gooijer C, Dosa PI, Han S, Miljanic OS, Volhardt KPC, Puchta R, van Eikema Hommes NJR (2003) Phys Chem Chem Phys 5:4563–4569

    Article  CAS  Google Scholar 

  37. Puchta R, Kolbig R, Weller F, Neumüller B, Massa W, Dehnicke K (2010) Z Anorg Chem 636:2364–2371

    Article  Google Scholar 

  38. Scott AP, Radom L (1996) J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  39. Law A, Simon L, Lee-Sullivan P (2008) Polym Eng Sci 48:627–633

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Peter Igel, Manfred Weller and Uwe Reißer from the machine shop of the department, for their expert assistance in technical troubleshooting concerning the mini-extruder. The Institute of Chemical Reaction Engineering is acknowledged for support with ICP/OES measurements. Furthermore, we would like to thank Prof. Dr. Tim Clark from the Computer Chemistry Center and the Regionales Rechenzentrum Erlangen (RRZE) for a generous assignment of computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi van Eldik.

Additional information

Published in the topical collection Reference Materials for Chemical Analysis with guest editors Hendrik Emons and Stephen A. Wise.

Raquel Urpi Bertran deceased on July 31, 2011 while working on her PhD thesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roth, T., Urpi Bertran, R., Latza, A. et al. Preparation of candidate reference materials for the determination of phosphorus containing flame retardants in styrene-based polymers. Anal Bioanal Chem 407, 3023–3034 (2015). https://doi.org/10.1007/s00216-014-8295-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8295-5

Keywords

Navigation