Skip to main content
Log in

HypCal, a general-purpose computer program for the determination of standard reaction enthalpy and binding constant values by means of calorimetry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The program HypCal has been developed to provide a means for the simultaneous determination, from data obtained by isothermal titration calorimetry, of both standard enthalpy of reaction and binding constant values. The chemical system is defined in terms of species of given stoichiometry rather than in terms of binding models (e.g., independent or cooperative). The program does not impose any limits on the complexity of the chemical systems that can be treated, including competing ligand systems. Many titration curves may be treated simultaneously. HypCal can also be used as a simulation program when designing experiments. The use of the program is illustrated with data obtained with nicotinic acid (niacin, pyridine-3 carboxylic acid). Preliminary experiments were used to establish the rather different titration conditions for the two sets of titration curves that are needed to determine the parameters for protonation of the carboxylate and amine groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schmidtchen FP. Hosting anions. The energetic perspective. Chem Soc Rev. 2010;39:3916–35.

    Article  CAS  Google Scholar 

  2. Sturtevant JM. In: Skinner HA, editor. Experimental thermochemistry, vol. 2. New York: Interscience; 1962. pp. 427–442.

  3. Benzinger TH, Kitzinger C. In: Hardy ID, editor. Temperature: its measurement and control in science and industry, vol. 3. New York: Reinhold; 1963

  4. Bolles TF, Drago RS. A calorimetric procedure for determining free energies, enthalpies, and entropies for the formation of acid-base adducts. J Am Chem Soc. 1965;87:5015–9.

    Article  CAS  Google Scholar 

  5. Christensen JJ, Izatt RM, Hansen LD, Partridge JA. Entropy titration. A calorimetric method for the determination of ΔG, ΔH, and ΔS from a single thermometric titration. J Phys Chem. 1966;70:2003–10.

    Article  CAS  Google Scholar 

  6. Naghibi H, Tamura A, Sturtevant JM. Significant discrepancies between van’t Hoff and calorimetric enthalpies. Proc Natl Acad Sci U S A. 1995;92:5597–9.

    Article  CAS  Google Scholar 

  7. Hansen LD, Fellingham GW, Russell DJ. Simultaneous determination of equilibrium constants and enthalpy changes by titration calorimetry: methods, instruments, and uncertainties. Anal Biochem. 2011;409:220–9.

    Article  CAS  Google Scholar 

  8. Demarse NA, Quinn CF, Eggett DL, Russell DJ, Hansen LD. Calibration of nanowatt isothermal titration calorimeters with overflow reaction vessels. Anal Biochem. 2011;417:247–55.

    Article  CAS  Google Scholar 

  9. ITC data analysis in Origin, tutorial guide. Northampton: Microcal; 2004.

  10. NanoAnalyze software, getting started guide. New Castle: TA Instruments; 2013.

  11. https://www.affinimeter.com. Accessed 11 Mar 2016.

  12. Hong L, Bush WD, Hatcher LQ, Simon JD. Determining thermodynamic parameters from isothermal calorimetric isotherms of the binding of macromolecules to metal cations originally chelated by a weak ligand. J Phys Chem B. 2008;112:604–11.

    Article  CAS  Google Scholar 

  13. Hatcher LQ, Hong L, Bush WD, Carducci T, Simon JD. Quantification of the binding constant of copper(II) to the amyloid-beta peptide. J Phys Chem B. 2008;112:8160–4.

    Article  CAS  Google Scholar 

  14. Arena G, Pappalardo G, Sovago I, Rizzarelli E. Copper(II) interaction with amyloid-β: affinity and speciation. Coord Chem Rev. 2012;256:3–12.

    Article  CAS  Google Scholar 

  15. Gans P, Sabatini A, Vacca A. Simultaneous calculation of equilibrium constants and standard formation enthalpies from calorimetric data for systems with multiple equilibria in solution. J Solution Chem. 2008;37:467–74.

    Article  CAS  Google Scholar 

  16. Tellinghuisen J. Optimizing experimental parameters in isothermal titration calorimetry. J Phys Chem B. 2005;109:20027–35.

    Article  CAS  Google Scholar 

  17. Nancollas GH, Tomson MB. Guidelines for the determination of stability constants. Pure Appl Chem. 1982;54:2675–92.

    Article  CAS  Google Scholar 

  18. Schmidtchen FP. Isothermal titration calorimetry in supramolecular chemistry. In: Schalley C, editor. Analytical methods in supramolecular chemistry. Weinheim: Wiley-VCH; 2007. p. 55–78.

    Google Scholar 

  19. Smithrud DB, Wyman TB, Diederich F. Enthalpically driven cyclophane-arene inclusion complexation: solvent-dependent calorimetric studies. J Am Chem Soc. 1991;113:5420–6.

    Article  CAS  Google Scholar 

  20. Sgarlata C, Mugridge JS, Pluth MD, Tiedemann BEF, Zito V, Arena G, et al. External and internal guest binding of a highly charged supramolecular host in water: deconvoluting the very different thermodynamics. J Am Chem Soc. 2010;132:1005–9.

    Article  CAS  Google Scholar 

  21. Bonaccorso C, Brancatelli G, Forte G, Arena G, Geremia S, Sciotto D, et al. Factors driving the self-assembly of water-soluble calix[4]arene and gemini guests: a combined solution, computational and solid-state study. RSC Adv. 2014;4:53575–87.

    Article  CAS  Google Scholar 

  22. Gans P, Sabatini A, Vacca A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta. 1996;43:1739–53.

    Article  CAS  Google Scholar 

  23. Grasso GI, Gentile S, Giuffrida ML, Satriano C, Sgarlata C, Sgarzi M, et al. Ratiometric fluorescence sensing and cellular imaging of Cu2+ by a new water soluble trehalose-naphthalimide based chemosensor. RSC Adv. 2013;3:24288–97.

    Article  CAS  Google Scholar 

  24. Gans P, Sabatini A, Vacca A. Determination of equilibrium constants from spectrophotometric data obtained from solutions of known pH: the program pHab. Ann Chim. 1999;89:45–9.

    CAS  Google Scholar 

  25. Sgarlata C, Zito V, Arena G, Consoli GML, Galante E, Geraci C. A sinapic acid–calix[4]arene hybrid selectively binds Pb2+ over Hg2+ and Cd2+. Polyhedron. 2009;28:343–8.

    Article  CAS  Google Scholar 

  26. Oliveri V, Puglisi A, Viale M, Aiello C, Sgarlata C, Vecchio G, et al. New cyclodextrin-bearing 8-hydroxyquinoline ligands as multifunctional molecules. Chem Eur J. 2013;19:13946–55.

    Article  CAS  Google Scholar 

  27. Frassineti C, Alderighi L, Gans P, Sabatini A, Vacca A, Ghelli S. Determination of protonation constants of some fluorinated polyamines by means of 13C NMR data processed by the new computer program HypNMR2000. Protonation sequence in polyamines. Anal Bioanal Chem. 2003;376:1041–52.

    Article  CAS  Google Scholar 

  28. Sgarlata C, Bonaccorso C, Gulino FG, Zito V, Arena G, Sciotto D. Inclusion of aromatic and aliphatic anions into a cationic water-soluble calix[4]arene at different pH values. Tetrahedron Lett. 2009;50:1610–3.

    Article  CAS  Google Scholar 

  29. Liu Y, Sturtevant JM. Significant discrepancies between van’t Hoff and calorimetric enthalpies. II. Prot Sci. 1995;4:2559–61.

    Article  CAS  Google Scholar 

  30. Liu Y, Sturtevant JM. Significant discrepancies between van’t Hoff and calorimetric enthalpies. III. Biophys Chem. 1997;64:121–6.

    Article  CAS  Google Scholar 

  31. Arena G, Pappalardo A, Pappalardo S, Gattuso G, Notti A, Parisi MF, et al. Complexation of biologically active amines by a water-soluble calix[5]arene. A nanocalorimetric investigation. J Therm Anal Calorim. 2015;121:1073–9.

    Article  CAS  Google Scholar 

  32. Horn JR, Brandts JF, Murphy KP. van’t Hoff and calorimetric enthalpies II: effects of linked equilibria. Biochemistry. 2002;41:7501–7.

    Article  CAS  Google Scholar 

  33. Horn JR, Russell D, Lewis EA, Murphy KP. van’t Hoff and calorimetric enthalpies from isothermal titration calorimetry: are there significant discrepancies? Biochemistry. 2001;40:1774–8.

    Article  CAS  Google Scholar 

  34. Chaires JB. Possible origin of differences between van’t Hoff and calorimetric enthalpy estimates. Biophys Chem. 1997;64:15–23.

    Article  CAS  Google Scholar 

  35. Li NC, White JY, Yoest RL. Some metal complexes of glycine and valine. J Am Chem Soc. 1956;78:5218–22.

    Article  CAS  Google Scholar 

  36. Ahrland S. Thermodynamics of complex formation between hard and soft acceptors and donors. Struct Bonding. 1968;5:118–49.

    Article  CAS  Google Scholar 

  37. Rigano C, Rizzarelli E, Sammartano S. A computer method for the calculation of enthalpy changes for ion association in solution from calorimetric data. Thermochim Acta. 1979;33:211–6.

    Article  CAS  Google Scholar 

  38. De Robertis A, De Stefano C, Rigano C. Computer analysis of equilibrium data in solution. ES5CM FORTRAN and BASIC programs for computing formation enthalpies from calorimetric measurements. Thermochim Acta. 1989;138:141–6.

    Article  Google Scholar 

  39. Spokane RB, Gill SJ. Titration microcalorimetry using nanomolar quantities of reactants. Rev Sci Instrum. 1981;52:1728–33.

    Article  CAS  Google Scholar 

  40. Tellinghuisen J. Calibration in isothermal titration calorimetry: heat and cell volume from heat of dilution of NaCl(aq). Anal Biochem. 2007;360:47–55.

    Article  CAS  Google Scholar 

  41. Tellinghuisen J. Optimizing experimental parameters in isothermal titration calorimetry: variable volume procedures. J Phys Chem B. 2007;111:11531–7.

    Article  CAS  Google Scholar 

  42. Velazquez-Campoy A, Freire E. Isothermal titration calorimetry to determine association constants for high-affinity ligands. Nat Protoc. 2006;1:186–91.

    Article  CAS  Google Scholar 

  43. Gans P, Sabatini A, Vacca A. SUPERQUAD: an improved general program for computation of formation constants from potentiometric data. J Chem Soc Dalton Trans. 1985;1195–1200.

  44. Smith RM, Martell AE. Critical stability constants, vol. 6. New York: Plenum; 1989.

    Book  Google Scholar 

  45. Alderighi L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A. Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord Chem Rev. 1999;184:311–8.

    Article  CAS  Google Scholar 

  46. Bonaccorso C, Ciadamidaro A, Zito V, Sgarlata C, Sciotto D, Arena G. Molecular recognition of organic anions by a water-soluble calix[4]arene: evidence for enthalpy–entropy compensation. Thermochim Acta. 2012;530:107–15.

    Article  CAS  Google Scholar 

  47. Bonaccorso C, Sgarlata C, Grasso G, Zito V, Sciotto D, Arena G. A gemini guest triggers the self-assembly of a calixarene capsule in water at neutral pH. Chem Commun. 2011;47:6117–9.

    Article  CAS  Google Scholar 

  48. Wadso I, Goldberg RN. Standards in isothermal microcalorimetry. Pure Appl Chem. 2001;73:1625–39.

    Article  CAS  Google Scholar 

  49. Sgarlata C, Zito V, Arena G. Conditions for calibration of an isothermal titration calorimeter using chemical reactions. Anal Bioanal Chem. 2013;405:1085–94.

    Article  CAS  Google Scholar 

  50. Mizoue LS, Tellinghuisen J. The role of backlash in the “first injection anomaly” in isothermal titration calorimetry. Anal Biochem. 2004;326:125–7.

    Article  CAS  Google Scholar 

  51. Christensen JJ, Izatt RM, Wrathall DP, Hansen LD. Thermodynamics of proton ionization in dilute aqueous solution. Part XI. pK, ΔH°, and ΔS° values for proton ionization from protonated amines at 25°. J Chem Soc A. 1969;1212–1223.

  52. Ashton LA, Bullock JI. Effect of temperature on the ionisation constants of 2-, 3- and 4-nitrobenzoic, phthalic and nicotinic acids in aqueous solution. J Chem Soc, Faraday Trans. 1982;1(78):1177–87.

    Article  Google Scholar 

  53. Evans RF, Herington EFG, Kynaston W. Determination of dissociation constants of the pyridine-monocarboxylic acids by ultra-violet photoelectric spectrophotometry. Trans Faraday Soc. 1953;49:1284–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The University of Catania (FIR 2014, 9DD800, and 018B9A) is gratefully acknowledged for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giuseppe Arena or Carmelo Sgarlata.

Ethics declarations

Conflict of Interest

GA and CS declare that they have no conflict of interest. PG is the sole proprietor of Protonic software.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arena, G., Gans, P. & Sgarlata, C. HypCal, a general-purpose computer program for the determination of standard reaction enthalpy and binding constant values by means of calorimetry. Anal Bioanal Chem 408, 6413–6422 (2016). https://doi.org/10.1007/s00216-016-9759-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9759-6

Keywords

Navigation