Skip to main content
Log in

Application of Cu2+-based electron spin resonance spectroscopy in measurement of antioxidant capacity of fruits

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The antioxidant capacity of 22 kinds of fruits was measured by the developed electron spin resonance (ESR) method based on Cu2+ sensor. Cu2+ is reduced to Cu+ by the antioxidants in the fruits, and the remaining Cu2+ was determined by ESR and UV-Vis spectroscopy. Cu2+ can give an ESR signal whereas Cu+ cannot, and the loss of the ESR signal was used to quantify the antioxidant capacity of various fruits. The results were shown as vitamin C equivalent antioxidant capacity (VCEAC). The VCEAC values obtained by ESR and UV-Vis methods ranged from 24.23 to 688.61 mg/100 g and from 24.12 to 677.79 mg/100 g, respectively. Cupric ion reducing antioxidant capacity (CUPRAC) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) methods were employed for comparison. Based on Pearson’s correlation test, the results obtained by CUPRAC and DPPH methods were both significantly correlated with these obtained by the present method, which indicated that the novel method was reliable. Total phenolic content for all kinds of fruits was measured with the Folin–Ciocalteu reagent, and VCEAC values obtained by the ESR method were significantly correlated with total phenolic contents.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Young IS, Woodside JV. Antioxidants in health and disease. J Clin Pathol. 2001;54:176–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.

    Article  CAS  Google Scholar 

  3. Jiang LY, He S, Pan YJ, Sun CR. Bioassay-guided isolation and EPR-assisted antioxidant evaluation of two valuable compounds from mango peels. Food Chem. 2010;119:1285–92.

    Article  CAS  Google Scholar 

  4. Stocker P, Lesgards JF, Vidal N, Chalier F, Prost M. ESR study of a biological assay on whole blood: antioxidant efficiency of various vitamins. Biochim Biophys Acta Gen Subj. 2003;1621:1–8.

    Article  CAS  Google Scholar 

  5. Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci. 2017;38:592–607.

    Article  CAS  Google Scholar 

  6. Chan C-L, Gan R-Y, Corke H. The phenolic composition and antioxidant capacity of soluble and bound extracts in selected dietary spices and medicinal herbs. Int J Food Sci Tech. 2016;51:565–73.

    Article  CAS  Google Scholar 

  7. Živković J, Zeković Z, Mujić I, Gođevac D, Mojović M, Mujić A, et al. EPR spin-trapping and spin-probing spectroscopy in assessing antioxidant properties: example on extracts of catkin, leaves, and spiny burs of castanea sativa. Food Biophys. 2009;4:126–33.

    Article  Google Scholar 

  8. Li Y, Bao T, Chen W. Comparison of the protective effect of black and white mulberry against ethyl carbamate-induced cytotoxicity and oxidative damage. Food Chem. 2018;243:65–73.

    Article  CAS  PubMed  Google Scholar 

  9. Contreras-Calderón J, Calderón-Jaimes L, Guerra-Hernández E, García-Villanova B. Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Res Int. 2011;44:2047–53.

    Article  CAS  Google Scholar 

  10. Jiao Y, Kilmartin PA, Fan M, Quek SY. Assessment of phenolic contributors to antioxidant activity of new kiwifruit cultivars using cyclic voltammetry combined with HPLC. Food Chem. 2018;268:77–85.

    Article  CAS  PubMed  Google Scholar 

  11. Jez M, Wiczkowski W, Zielinska D, Bialobrzewski I, Blaszczak W. The impact of high pressure processing on the phenolic profile, hydrophilic antioxidant and reducing capacity of puree obtained from commercial tomato varieties. Food Chem. 2018;261:201–9.

    Article  CAS  PubMed  Google Scholar 

  12. Diaconeasa Z, Leopold L, Rugina D, Ayvaz H, Socaciu C. Antiproliferative and antioxidant properties of anthocyanin rich extracts from blueberry and blackcurrant juice. Int J Food Sci Tech. 2015;16:2352–65.

    CAS  Google Scholar 

  13. Wang H, Guo X, Hu X, Li T, Fu X, Liu RH. Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.). Food Chem. 2017;217:773–81.

    Article  CAS  PubMed  Google Scholar 

  14. Shahidi F, Zhong Y. Measurement of antioxidant activity. J Funct Foods. 2015;18:757–81.

    Article  CAS  Google Scholar 

  15. Assefa AD, Keum Y-S, Saini RK. A comprehensive study of polyphenols contents and antioxidant potential of 39 widely used spices and food condiments. J Food Meas Charact. 2018;12:1548–55.

    Article  Google Scholar 

  16. Ambigaipalan P, de Camargo AC, Shahidi F. Identification of phenolic antioxidants and bioactives of pomegranate seeds following juice extraction using HPLC-DAD-ESI-MS(n). Food Chem. 2017;221:1883–94.

    Article  CAS  PubMed  Google Scholar 

  17. Sentkowska A, Pyrzynska K. Investigation of antioxidant interaction between green tea polyphenols and acetaminophen using isobolographic analysis. J Pharm Biomed Anal. 2018;159:393–7.

    Article  CAS  PubMed  Google Scholar 

  18. Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Hawkins BD. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal. 2006;19:669–75.

    Article  CAS  Google Scholar 

  19. Vignault A, Gonzalez-Centeno MR, Pascual O, Gombau J, Jourdes M, Moine V, et al. Chemical characterization, antioxidant properties and oxygen consumption rate of 36 commercial oenological tannins in a model wine solution. Food Chem. 2018;268:210–9.

    Article  CAS  PubMed  Google Scholar 

  20. Ioannone F, Di Mattia CD, De Gregorio M, Sergi M, Serafini M, Sacchetti G. Flavanols, proanthocyanidins and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Food Chem. 2015;174:256–62.

    Article  CAS  PubMed  Google Scholar 

  21. Floegel A, Kim D-O, Chung S-J, Koo SI, Chun OK. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compos Anal. 2011;24:1043–8.

    Article  CAS  Google Scholar 

  22. Elias RJ, Andersen ML, Skibsted LH, Waterhouse AL. Identification of free radical intermediates in oxidized wine using electron paramagnetic resonance spin trapping. J Agric Food Chem. 2009;57:4359–65.

    Article  CAS  PubMed  Google Scholar 

  23. Bartoš J, Švajdlenková H, Zaleski R, Edelmann M, Lukešová M. Spin probe dynamics in relation to free volume in crystalline organics by means of ESR and PALS: n-hexadecane. Phys B Condens Matter. 2013;430:99–105.

    Article  CAS  Google Scholar 

  24. Weil J. A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Phys Chem Miner. 1984;10:149–65.

    Article  CAS  Google Scholar 

  25. Minakata K, Suzuki O. Quantitation of manganese by use of an electron spin resonance method. Anal Chem. 2002;74:6111–3.

    Article  CAS  PubMed  Google Scholar 

  26. Morsy MA, Sultan SM, Dafalla H. Electron paramagnetic resonance method for the quantitative assay of ketoconazole in pharmaceutical preparations. Anal Chem. 2009;81:6991–5.

    Article  CAS  PubMed  Google Scholar 

  27. Borbat PP, Costa-Filho AJ, Earle KA, Moscicki JK, Freed JH. Electron spin resonance in studies of membranes and proteins. Science. 2001;291:266–9.

    Article  CAS  PubMed  Google Scholar 

  28. Webb MI, Walsby CJ. EPR as a probe of the intracellular speciation of ruthenium(III) anticancer compounds. Metallomics. 2013;5:1624–33.

    Article  CAS  PubMed  Google Scholar 

  29. Polovka M. EPR spectroscopy a tool to characterize stability. J Food Nutr Res. 2006;45:1–11.

    CAS  Google Scholar 

  30. Escudero R, Segura J, Velasco R, Valhondo M, Romero de Avila MD, Garcia-Garcia AB, et al. Electron spin resonance (ESR) spectroscopy study of cheese treated with accelerated electrons. Food Chem. 2019;276:315–21.

    Article  CAS  PubMed  Google Scholar 

  31. Tian S, Jiang J, Zang S, Wang K, Yu Y, Li X, et al. Determination of IgG by electron spin resonance spectroscopy using Fe3O4 nanoparticles as probe. Microchem J. 2018;141:444–50.

    Article  CAS  Google Scholar 

  32. Jiang J, Tian S, Wang K, Wang Y, Zang S, Yu A, et al. Electron spin resonance spectroscopy for immunoassay using iron oxide nanoparticles as probe. Anal Bioanal Chem. 2018;410:1817–24.

    Article  CAS  PubMed  Google Scholar 

  33. Bartoszek M, Polak J. A comparison of antioxidative capacities of fruit juices, drinks and nectars, as determined by EPR and UV-vis spectroscopies. Spectrochim Acta A Mol Biomol. 2016;153:546–9.

    Article  CAS  Google Scholar 

  34. Zang S, Tian S, Jiang J, Han D, Yu X, Wang K, et al. Determination of antioxidant capacity of diverse fruits by electron spin resonance (ESR) and UV-vis spectrometries. Food Chem. 2017;221:1221–5.

    Article  CAS  PubMed  Google Scholar 

  35. Azman NA, Peiro S, Fajari L, Julia L, Almajano MP. Radical scavenging of white tea and its flavonoid constituents by electron paramagnetic resonance (EPR) spectroscopy. J Agric Food Chem. 2014;62:5743–8.

    Article  CAS  PubMed  Google Scholar 

  36. Polak J, Bartoszek M, Stanimirova I. A study of the antioxidant properties of beers using electron paramagnetic resonance. Food Chem. 2013;141:3042–9.

    Article  CAS  PubMed  Google Scholar 

  37. Li D, Jiang J, Han D, Yu X, Wang K, Zang S, et al. Measurement of antioxidant capacity by electron spin resonance spectroscopy based on copper(II) reduction. Anal Chem. 2016;88:3885–90.

    Article  CAS  PubMed  Google Scholar 

  38. Jiang J, Zang S, Li D, Wang K, Tian S, Yu A, et al. Determination of antioxidant capacity of thiol-containing compounds by electron spin resonance spectroscopy based on Cu2+ ion reduction. Talanta. 2018;184:23–8.

    Article  CAS  PubMed  Google Scholar 

  39. Apak R, Güçlü K, Özyürek M, Çelik SE. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim Acta. 2007;160:413–9.

    Article  CAS  Google Scholar 

  40. Sellappan S, Akoh C, Krewer G. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J Agric Food Chem. 2002;50:2432–8.

    Article  CAS  PubMed  Google Scholar 

  41. Özyürek M, Güçlü K, Apak R. The main and modified CUPRAC methods of antioxidant measurement. Trends Analyt Chem. 2011;30:652–64.

    Article  CAS  Google Scholar 

  42. Piljac-Žegarac J, Valek L, Martinez S, Belščak A. Fluctuations in the phenolic content and antioxidant capacity of dark fruit juices in refrigerated storage. Food Chem. 2009;113:394–400.

    Article  CAS  Google Scholar 

  43. Locatelli M, Gindro R, Travaglia F, Coïsson J-D, Rinaldi M, Arlorio M. Study of the DPPH-scavenging activity: development of a free software for the correct interpretation of data. Food Chem. 2009;114:889–97.

    Article  CAS  Google Scholar 

  44. Velioglu YS, Mazza G, Gao L, Oomah BD. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem. 1998;46:4113–7.

    Article  CAS  Google Scholar 

  45. Vasco C, Ruales J, Kamal-Eldin A. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chem. 2008;111:816–23.

    Article  CAS  Google Scholar 

  46. Fu L, Xu BT, Xu XR, Gan RY, Zhang Y, Xia EQ, et al. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011;129:345–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Development Planning Project of Jilin Province (Grant No. 20180201027GX and 20180201059SF) and the National Natural Science Foundation of China (Grant No. 31300621).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziwei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, S., Li, X., Jiang, J. et al. Application of Cu2+-based electron spin resonance spectroscopy in measurement of antioxidant capacity of fruits. Anal Bioanal Chem 411, 6677–6686 (2019). https://doi.org/10.1007/s00216-019-02041-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02041-4

Keywords

Navigation