Skip to main content
Log in

The ability of biogenic amines and ammonia production by single bacterial cultures

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The amino acid decarboxylating activity and production of biogenic amines, trimethylamine and ammonia by Morganella morganii (two strains), Klebsiella pneumoniae (three strains), Hafnia alvei (two strains), Enterococcus faecalis, Photobacterium phosphoreum, Micrococcus sp., Psychrobacter immobilis, Corynebacterium sp., Vibrio fischeri, Vibrio harveyi and Pseudomonas putida were investigated using a rapid HPLC method. In a laboratory medium containing amino acid (histidine, ornithine, lysine, tyrosine and arginine), not all bacterial strains produced the biogenic amines but most of them produced histamine, putrescine, cadaverine and ammonia. Cadaverine production by Klebsiella pneumoniae (8152), Klebsiella pneumoniae (673), Klebsiella pneumoniae (2122), Hafnia alvei (6578), Hafnia alvei (11999), Vibrio fischeri (25) Vibrio harveyi (42) and Pseudomonas putida (10936) was 531, 422, 532, 485, 472, 343, 547 and 343 mg/l, respectively in lysine decarboxylase broth. Tyramine was produced in highest concentration (526 mg/l) by Enterococcus faecalis (775). Agmatine was not produced apart from Psychrobacter immobilis (100) in an arginine decarboxylase broth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wendakoon CN, Sakaguchi M (1992) In: Huss HH, Jakobsen M, Liston J (eds) Proceedings of an international conference on quality assurance in the fish industry, 26–30 August 1991. Elsevier, Amsterdam, Copenhagen (DK), pp 305–13 (Development in Food Sci Series; 30)

  2. Wendakoon CN, Sakaguchi M (1992) J Food Hyg Soc Jpn 33(1):39–45

    CAS  Google Scholar 

  3. Suzuki S, Noda J, Takama K (1990) Bull Fac Fish, Hokkaido Univ 41(4):213–20

    CAS  Google Scholar 

  4. Shalaby AR (1996) Food Res Int 29(7):675–690

    Article  CAS  Google Scholar 

  5. Nout MJR, Ruikes MMW, Bouwmeester HM, Beljaars PR (1993) J Food Safety 13(4):293–303

    Article  CAS  Google Scholar 

  6. Teodorovic V, Buncic S, Smiljanic D (1994) Fleischwirtschaft 74(2):181–183

    Google Scholar 

  7. Silla-Santos SMH (1996) Int J Food Microbiol 29:213–231

    Article  PubMed  CAS  Google Scholar 

  8. Ando S (1960) J Biochem 47:787–793

    CAS  Google Scholar 

  9. Arnold SH, Brown WD (1978) In: Chishester CO, Mrak EM, Stewart GF (eds) Advances in food research, vol 24. Academic Press, New York, pp 113–154

  10. Edmunds WJ, Eitenmiller RR (1975) J Food Sci 40:516–519

    Article  CAS  Google Scholar 

  11. Frank HA, Yoshinaga DH (1984) ACS-Symp Ser 262:443–451

    Article  Google Scholar 

  12. Guirard BM, Snell EE (1954) J Am Chem Soc 76:4745–4746

    Article  CAS  Google Scholar 

  13. Chen CM, Wei CI, Koburger JA, Marshall MR (1989) J Food Protect 52(11):808–813

    CAS  Google Scholar 

  14. Taylor SL (1986) Crit Rev Toxicol 17(2):91–128

    PubMed  CAS  Google Scholar 

  15. Taylor SL, Guthertz LS, Leatherwood M, Lieber ER (1979) Appl Environ Microb 37(2):274–278

    CAS  Google Scholar 

  16. Morii H, Cann DC, Taylor LY (1988) Bull Jpn Soc Sci Fish 54(2):299–305

    CAS  Google Scholar 

  17. Okuzumi M, Hiraishi A, Kobayashi T, Fujii T (1994) Int J Syst Bacteriol 44(4):631–636

    Article  CAS  Google Scholar 

  18. Frank HA, Baranowski JD, Chongsiriwatana M, Brust PA, Premaratue RJ (1985) Int J Food Microbiol 2(6):331–340

    Article  CAS  Google Scholar 

  19. Rodriguez-Jerez JJ, Mora-Ventura MT, Lopez-Sabater EI, Hernandez-Herrero M (1994b) J Food Prod 57(5):784–787, 791

    CAS  Google Scholar 

  20. Middlebrooks BL, Toom PM, Donglas WL, Harrison RE, McDowell S (1988) J Food Sci 53(4):1024–1029

    Article  CAS  Google Scholar 

  21. Lopez-Sabater EI, Rodriguez-Jerez JJ, Hernandez-Herrero M, Mora-Ventura MT (1994b) Lett Appl Microbiol 19:70–75

    CAS  Google Scholar 

  22. Lopez-Sabater EI, Rodriguez-Jerez JJ, Hernandez-Herrero M, Mora-Ventura MT (1996) Int J Food Microbiol 28(3):411–418

    Article  PubMed  CAS  Google Scholar 

  23. Taylor SL, Sumner SS (1987) In: Kramer DT, Liston J (eds) Seafood quality determination. Elsevier Science Publisher, B. V. Amsterdam, pp 235–245

  24. Rodriguez-Jerez JJ, Mora-Ventura MT, Lopez-Sabater EI, Hernandez-Herrero M (1994) J Food Sci 59(5):998–101

    Article  CAS  Google Scholar 

  25. Niven Jr CF, Jeffrey MB, Corlett Jr DA (1981) Appl Environ Microbiol 41(1):321–322

    PubMed  Google Scholar 

  26. Behling AR, Taylor SL (1982) J Food Sci 47:1311–1314, 1317

    Article  CAS  Google Scholar 

  27. Klausen NK, Huss HH (1987) Int J Food Microbiol 5(2):137–146

    Article  CAS  Google Scholar 

  28. Özogul F (2004) Eur Food Res Technol 219:465–469

    Article  CAS  Google Scholar 

  29. Lopez-Sabater EI, Rodriguez-Jerez JJ, Roig-Sagues AX, Mora-Ventura MAT (1994a) J Food Protect 57:318–323

    Google Scholar 

  30. Özogul F, Özogul Y (2005) Eur Food Res Technol 221:575–581

    Article  CAS  Google Scholar 

  31. Ryser ET, Marth EH, Taylor SL (1984) J Food Protect 47(5):378–380

    CAS  Google Scholar 

  32. Ferencik M (1970) J Hyg Epidemiol Microbiol Immunol 14(1):52–60

    PubMed  CAS  Google Scholar 

  33. Lehane L, Olley J (2000) Int J Food Microbiol 58:1–37

    Article  PubMed  CAS  Google Scholar 

  34. Brink B, Damink C, Joosten HMLJ, Huis in't Veld JHJ (1990) Int J Food Microbiol 11:73–84

    Article  PubMed  Google Scholar 

  35. Choudhury N, Hansen W, Engesser D, Hammes WP, Holzapfel WH (1990) Lett Appl Microbiol 11(6):278–281

    CAS  Google Scholar 

  36. Fujii T, Kurihara K, Okuzumi M (1994) J Food Protect 57(7):611–613

    CAS  Google Scholar 

  37. Geornaras I, Dykes GA, von Holy A (1995) Lett Appl Microbiol 21(3):164–166

    PubMed  CAS  Google Scholar 

  38. Marino M, Maifreni M, Moret S, Rondinini G (2000) Lett Appl Microbiol 31(2):169–173

    Article  PubMed  CAS  Google Scholar 

  39. Okuzumi M, Fukumoto I, Fujii T (1990) Bull Jpn Soc Sci Fish 56(8):1307–1312

    CAS  Google Scholar 

  40. Morii H, Izumi Y, Kasama K, Ishimoto R (1994) Nippon Suisan Gakk 60:773–777

    CAS  Google Scholar 

  41. Ramesh A, Venugopalan VK (1986) Food Microbiol 3:103–105

    Article  Google Scholar 

  42. Van Spreekens KJA (1987) In: Kramer DE, Liston J (eds) Seafood quality determination. Elsevier Science Publishers, London, pp 309–318

  43. Smith TA (1981) Amines in food. Food Chem 6:169–200

    Article  CAS  Google Scholar 

  44. Espe M, Lied E, Torrissen KR (1993) Comp Biochem Phys 105A:555–562

    Article  CAS  Google Scholar 

  45. Dainty RH, Edwards RA, Hibbard CM, Ramantanis SV (1986) J Appl Bacteriol 61:117–123

    PubMed  CAS  Google Scholar 

  46. Jorgensen LV, Huss HH, Dalgaard P (2000) J Appl Microbiol 89:920–934

    Article  PubMed  CAS  Google Scholar 

  47. Engesser D, Hammes WP, Holzapfel WH (1990) Food Biotechnol 4:478–482

    Google Scholar 

  48. Maijala R, Eerola S, Aho MA, Hirn JA (1993) J Food Protect 50:125–129

    Google Scholar 

  49. von Beutling D (1993) Arch Lebensmittelhyg 44:83–87

    Google Scholar 

  50. Bardocz S (1995) Trends Food Sci Tech 6(10):341–346

    Article  CAS  Google Scholar 

  51. Axelsson L (1998) In: Salminen S, von Wright A (eds) Lactic acid bacteria, microbiology and functional aspects. Marcel Dekker Inc., New York, pp 1–72

  52. Baumann P, Schubert RHW (1984) In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 500–516

  53. Grimont F, Grimont PAD (1992) In: Balows HGTA, Dworkin M, Harder W, Schleifer KH (eds), The prokaryotes. Springer- Verlag, NY, pp 1508–1534

  54. Sakzaki R, Tamura K (1992) In: Balows HGTA, Dworkin M, Harder W, Schleifer, KH (eds) The prokaryotes. Springer-Verlag, NY, pp 2816–2821

  55. Stalon V, Mercenier A (1984) J Gen Microbiol 130:69–76

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Özogul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özogul, F., Özogul, Y. The ability of biogenic amines and ammonia production by single bacterial cultures. Eur Food Res Technol 225, 385–394 (2007). https://doi.org/10.1007/s00217-006-0429-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-006-0429-3

Keywords

Navigation