Skip to main content
Log in

Scavenging and anti-fatigue activity of fermented defatted soybean peptides

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Many bioactive peptides possess specific biological properties that make these potential ingredients of health-promoting foods. Increasing attention is being focused on physiologically active peptides derived from soybean proteins. In this study, soybean peptides were produced by fermentation of defatted soybean meal with Bacillus subtilis SHZ and purified by ultrafiltration and gel chromatogram. Free radical scavenging property and the effect on anti-fatigue of the peptides were evaluated in vitro and in vivo, respectively. Swimming endurance tests of mice were carried out after 20 days of soybean peptides administration (0, 100, 200, 400 mg/kg BW/day for control, low-dose, middle-dose and high-dose group, respectively). And the blood lactate and hepatic glycogen of mice were determined. Results showed that the purified peptides exhibited significant (P < 0.01) scavenging potencies on superoxide (62%) and hydroxyl (96%) at a concentration of 10 mg/ml. The average swimming time of the low-, middle- and high-dose group was increased by 20.91, 45.45 and 70% compared with that of control group, respectively. And administration with soybean peptides could significantly accelerate the clearance of blood lactate after mice swimming (P < 0.01). The hepatic glycogen storage of middle and high dose groups were obviously increased (P < 0.05). It suggested that the soybean peptides produced by fermentation could significantly alleviate physical fatigue of the mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Suetsuna K, Chen JR, Yamauchi F (1991) J Clin Rep 25:75–86

    Google Scholar 

  2. Okamoto A, Hanagata H, Kawamura Y, Yanagida F (1995) J Plant Food Hum Nutr 47:39–47

    Article  CAS  Google Scholar 

  3. Lee KA, Kim SH (2005) J Food Chem 90:389–393

    Article  CAS  Google Scholar 

  4. Halliwell B (1994) Lancet 344:721–724

    Article  CAS  Google Scholar 

  5. Glavin GB, Murison R, Overmier JB, Pare WP, Bakke HK, Henke PG, Hernandez DE (1991) Brain Res Rev 16:301–343

    Article  CAS  Google Scholar 

  6. Maes M, Song C, Lin A, De Jongh R, Van Gastel A, Keins G, Bosmans E, De Meester I, Benoy I, Neels H, Demedts P, Janca A, Scharpe S, Smith RS (1998) Cytokine 10:313–318

    Article  CAS  Google Scholar 

  7. Davis JM, Bailey SP (1997) Med Sci Sport Exer 29:45–57

    CAS  Google Scholar 

  8. Silk DB, Hegarty JE, Fairclough PD (1982) Ann Nutr Metab 26:337–352

    CAS  Google Scholar 

  9. Nikawa T, Ikemoto M, Sakai T (2002) Nutrition 18:490–495

    Article  CAS  Google Scholar 

  10. Shin ZI, Yu R, Park SA,Chung DK, Nam HS, Kim KS (2001) J Agr Food Chem 49:3004–3009

    Article  CAS  Google Scholar 

  11. Wu J, Ding X (2001) J Agr Food Chem 49:501–506

    Article  CAS  Google Scholar 

  12. Netto FM, Galeazzi MAM (1998) Lebensm-Wissen und-Tech 31:624–631

    Article  CAS  Google Scholar 

  13. Ichimura T, Hu J, Aita DQ, Maruyama S (2003) J Biosci Bioeng 5:496–499

    Google Scholar 

  14. Kim DC, Chae H J, In MJ (2004) J Food Compos Anal 17:113–118

    Article  CAS  Google Scholar 

  15. Wan Q, Lu ZX, Gao H (2003) Food Sci (Chinese) 24:29–32

    CAS  Google Scholar 

  16. Lv SX (2003) The instruction of basic biochemistry experiment. China Agriculture University Publishing Company, Beijing

    Google Scholar 

  17. Halliwell B, Gutteridge JMC, Aruoma OI (1987) Anal Biochem 165: 215–219

    Article  CAS  Google Scholar 

  18. Abe T, Takiguchi Y, Tamura M, Shimura J, Yamazaki KI (1995) Jpn J Phys Fit Sports Med 44:225–238

    Google Scholar 

  19. Halliwell B, Gutteridge JMC (1999) Free radical bio med. Oxford University Press, Oxford

    Google Scholar 

  20. Debashis DD, Bhattacharjee BM, Banerjee RK (1997) Free Radical Bio Med 23:8–18

    Article  Google Scholar 

  21. Gibbs BF, Zougman A, Masse R, Mulligan C (2004) J Food Res Int 37:123–131

    Article  CAS  Google Scholar 

  22. Suetsuna K, Ukeda H, Ochi H (2000) J Nutr Biochem 11:128–131

    Article  CAS  Google Scholar 

  23. Rajapakse N, Mendis E, Jung WK, Je JY, Kim SK (2005) Food Res Int 38:175–182

    Article  CAS  Google Scholar 

  24. Blomstrand B, Newsholme EA (1992) Acta Physiol Scand 146:293–298

    Article  CAS  Google Scholar 

  25. Bazzarva TL, Murdoch DD, Wu SL, Herr DC, Snider IP (1992) J Am Coll Nutr 11:501–511

    Google Scholar 

  26. Guezennec CY, Abdelmalki A, Serrurier B (1998) Int J Sport Med19:323–327

    Article  Google Scholar 

  27. Marquezi ML, Roschel HA, Costa ADS, Sawada LA, Lancha AH (2003) Inter J Sport Nutr Exer Metab 13:65–75

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Ministry of Science and Technology of Jiangsu, China (project number BE-2001406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Xin Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, B., Lu, ZX., Bie, XM. et al. Scavenging and anti-fatigue activity of fermented defatted soybean peptides. Eur Food Res Technol 226, 415–421 (2008). https://doi.org/10.1007/s00217-006-0552-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-006-0552-1

Keywords

Navigation