Skip to main content
Log in

Performance of Lactobacillus sanfranciscensis TMW 1.392 and its levansucrase deletion mutant in wheat dough and comparison of their impact on bread quality

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The performance of Lactobacillus sanfranciscensis TMW 1.392 and its levansucrase deletion mutant TMW 1.392 Δlev in wheat dough was compared. The effects of both strains on dough and bread characteristics were determined in order to find benchmarks for in situ production of exopolysaccharides (EPS). Growth and acidification were lower in doughs prepared with the Δlev mutant than in those employing the wild type. Extensogram resistance of the dough was reduced and extensibility increased with the addition of L. sanfranciscensis levan. Added EPS positively influenced water absorption, bread volume and firming of the crumb. In situ production of EPS was not sufficient to achieve the same positive effects of EPS, as they partially overlapped with effects resulting from enhanced acidification. Control doughs were made to separate effects of predough, EPS and different metabolism/acidification. High acetic acid levels decreased extensibility and volume. High lactic acid levels negatively influenced crumb hardness and firming kinetics. The use of knock out mutants proved helpful to judge overall performance of a strain, although the interpretation of specific effects must consider all changes in its metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hammes WP, Gänzle, MG (1998) In: Wood BJB (ed) Microbiology of fermented foods, 2nd edn, vol. 2. Blackies Academic & Professional, London, Chapmann and Hall, London, pp 199–216

  2. Clarke CI, Arendt EK (2005) Adv Food Nutrition Res 49:138–161

    Google Scholar 

  3. Corsetti A, Gobbetti M, Balestrieri F, Paoletti F, Russi L, Rossi J (1998) J Food Sci 63:347–351

    Article  CAS  Google Scholar 

  4. Corsetti A, Gobbetti M, de Marco B, Balestrieri F, Paoletti F, Russi L, Rossi J (2000) J Agric Food Chem 48:3044–3051

    Article  CAS  Google Scholar 

  5. Liljeberg HG, Lonner CH, Bjorck IM (1995) J Nutr 125:1503–1511

    CAS  Google Scholar 

  6. Thiele C, Gänzle MG, Vogel RF (2002) Anal Biochem 310:171–178

    Article  CAS  Google Scholar 

  7. Davidou S, Meste M, Debever E, Bekkaert D (1996) Food Hydrocolloids 10:375–383

    Article  CAS  Google Scholar 

  8. Rosell CM, Rojas JA, Benedito de Barber C (2001) Food Hydrocolloids 15:75–81

    Article  CAS  Google Scholar 

  9. De Vuyst L, Degeest B (1999) FEMS Microbiol Rev 23:153–177

    Article  Google Scholar 

  10. Duboc P, Mollet B (2001) Int Dairy J 11:759–768

    Article  CAS  Google Scholar 

  11. Decock P, Cappelle S (2005) Trends Food Sci Technol 16:113–120

    Article  CAS  Google Scholar 

  12. Dal Bello F, Walter J, Hertel C, Hammes WP (2001) System Appl Microbiol 24:232–237

    Article  CAS  Google Scholar 

  13. Korakli M, Gänzle MG, Vogel RF (2002) J Appl Microbiol 92:958–965

    Article  CAS  Google Scholar 

  14. Tieking M, Korakli M, Ehrmann MA, Gänzle MG, Vogel RF (2003) Appl Environ Microbiol 69:945–952

    Article  CAS  Google Scholar 

  15. Korakli M, Vogel RF (2006) Appl Microbiol Biotechnol 71:790–803

    Article  CAS  Google Scholar 

  16. Schwab C (2006) Doctoral thesis, Technische Universität München, Germany

  17. Gobbetti M, Corsetti A (1997) Food Microbiol 14:175–187

    Article  CAS  Google Scholar 

  18. Hammes WP, Stolz P, Gänzle MG (1996) Adv Food Sci 18:176–184

    CAS  Google Scholar 

  19. Korakli M, Rossmann A, Gänzle MG, Vogel RF (2001) J Agric Food Chem 49:5194–5200

    Article  CAS  Google Scholar 

  20. Tieking M, Ehrmann MA, Vogel R, Gänzle MG (2005) Appl Microbiol Biotechnol 66:655–663

    Article  CAS  Google Scholar 

  21. Stolz P, Böcker G, Hammes WP, Vogel RF (1995) Z Lebensm Unters Forsch 201:91–96

    Article  CAS  Google Scholar 

  22. Huang WN, Hoseney RC (1999) Cereal Chem 76:276–281

    Article  CAS  Google Scholar 

  23. Kieffer R, Garnreiter F, Belitz HD (1981) Z Lebensm Unters Forsch 173:193–194

    Article  Google Scholar 

  24. Anonymous, AACC (1999) Approved Methods of American Associations of Cereal Chemists. St. Paul, MN

  25. Leon A, Duran E, Benedito de Barber C (1997) Z Lebensm Unters Forsch A/Food Res Technol 204:316–320

    Article  CAS  Google Scholar 

  26. Lewington J, Greenaway SD, Spillane BJ (1987) Lett Appl Microbiol 5:51–53

    Article  CAS  Google Scholar 

  27. Sambrook J, Fritsch EF, Maniatis T (1989) Cold Spring Harbor Laboratory Press, Woodbury, NY

  28. Kim D-S, Thomas S, Fogler HS (2000) Appl Environ Microbiol 66:976–981

    Article  CAS  Google Scholar 

  29. Collar C, Andreu P, Martínez JC, Armero E (1999) Food Hydrocolloids 13:467–475

    Article  CAS  Google Scholar 

  30. Christianson DD, Hodge JE, Osborne D, Detroy RW (1981) Cereal Chem 58:513–517

    CAS  Google Scholar 

  31. Huebner FR Wall JS (1979) Cereal Chem 56:68–73

    Google Scholar 

  32. Martin ML, Hoseney RC (1991) Cereal Chem 68:503–507

    CAS  Google Scholar 

  33. Brandt MJ, Roth K, Hammes WP (2003) In: de Vyust L (ed) Sourdough, from fundamentals to applications. IMDO, Vrije Universiteit Bruessels (VUB), p 80

  34. Ribotta PD, Ausar SF, Beltramo DM, Léon AE (2005) Food Hydrcolloids 19:93–99

    Article  CAS  Google Scholar 

  35. Seiffert M (2006) In: Brandt MJ, Gänzle MG (eds) Handbuch Sauerteig. Behr´s Verlag, Hamburg, pp 285–327

  36. Brümmer JM (1977) Getreide, Mehl und Brot 31:296–299

    Google Scholar 

  37. Arendt EK, Ryan LAM, Dal Bello F (2007) Food Microbiol 24:165–174

    Article  CAS  Google Scholar 

  38. Armero E, Collar C (1996) J Food Sci 61:299–303

    Article  CAS  Google Scholar 

  39. Clarke CI, Schober T, Arendt EK (2002) Cereal Chem 79:640–647

    Article  CAS  Google Scholar 

  40. Tanaka K, Furukawa S, Matsumoto H (1967) Cereal Chem 44:675–680

    CAS  Google Scholar 

  41. Barber S, Báguena R, Bendito de Barber C, Martínez-Anaya MA (1991) Z Lebensm Unters Forsch 192:46–52

    Article  CAS  Google Scholar 

  42. Barber B, Ortolá C, Barber S, Fernandéz F (1992) Z Lebensm Unters Forsch 194:442–449

    Article  CAS  Google Scholar 

  43. Lee WY, Urnau AM (1969) J Agric Food Chem 17:1306–1311

    Article  CAS  Google Scholar 

  44. Clarke CI, Schober T, Dockery P, O’Sullivan K, Arendt EK (2004) Cereal Chem 81:409–417

    Article  CAS  Google Scholar 

  45. Crowly P, Schober TJ, Clarke IC, Arendt E (2002) Eur Food Res Technol 214:489–496

    Article  CAS  Google Scholar 

  46. Collar C, Barber B, Martinéz-Anaya MA (1994) J Food Sci 59:629–633

    Article  Google Scholar 

Download references

Acknowledgements

Part of the work discussed in this study was supported by the FEI (Forschungskreis der Ernährungsindustrie e.V., Bonn, Germany), the AiF and the Ministry of Economics and Technology. Project No.: AiF-FV 14037 N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi F. Vogel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaditzky, S., Seitter, M., Hertel, C. et al. Performance of Lactobacillus sanfranciscensis TMW 1.392 and its levansucrase deletion mutant in wheat dough and comparison of their impact on bread quality. Eur Food Res Technol 227, 433–442 (2008). https://doi.org/10.1007/s00217-007-0738-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-007-0738-1

Keywords

Navigation