Skip to main content
Log in

Tyramine production of technological important strains of Lactobacillus, Lactococcus and Streptococcus

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The aim of this paper was to study the biogenic amines (histamine, tyramine, putrescine, cadaverine, agmatine, spermine and spermidine) production of selected technological important lactic acid bacteria (strains of the genera Lactococcus, Lactobacillus and Streptococcus). Three methods (ion-exchange chromatography (IEC), PCR and cultivation method with pH indicator) were used. Within the 39 strains of lactic acid bacteria tested, the production of tyramine (formed by tyrosine decarboxylase) was detected in eight strains (3 strains of Lactococcus lactis subsp. lactis, three strains of Lactococcus lactis subsp. cremoris, 1 strain of Streptococcus thermophilus and 1 strain of Lactobacillus delbrueckii subsp. bulgaricus). The other tested biogenic amines were not detected. Cultivation in decarboxylation broth seems to be the least accurate method for the detection of biogenic amines due to enhanced risk of false-positive reactions. Therefore, in order to detect bacteria producing biogenic amines, the combination of PCR and chromatographic methods (e.g. IEC) can be recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Halász A, Baráth Á, Simon-Sarkadi L, Holzapfel W (1994) Trends Food Sci Technol 5:42–49

    Article  Google Scholar 

  2. Silla Santos MH (1996) Int J Food Microbiol 29:213–231

    Article  CAS  Google Scholar 

  3. Bover-Cid S, Miguélez-Arrizado MJ, Becker B, Holzapfel WH, Vidal-Carou MC (2008) Food Microbiol 25:269–277

    Article  CAS  Google Scholar 

  4. Fernández M, Linares DM, Rodríguez A, Alvarez MA (2007) Appl Microbiol Biotechnol 73:1400–1406

    Article  CAS  Google Scholar 

  5. Gardini F, Martuscelli M, Caruso MC, Galgano F, Crudele MA, Favati F, Guerzoni ME, Suzzi G (2001) Int J Food Microbiol 64:105–117

    Article  CAS  Google Scholar 

  6. Gardini F, Zaccarelli A, Belleti N, Faustini F, Cavazza A, Martuscelli M, Mastrocola D, Suzzi G (2005) Food Control 16:609–616

    Article  CAS  Google Scholar 

  7. Arena ME, Fiocco D, Manca de Nadra MC, Pardo I, Spano G (2007) Curr Microbiol 55:205–210

    Article  CAS  Google Scholar 

  8. Aymerich T, Martín B, Garriga M, Vidal-Carou MC, Bover-Cid S, Hugas M (2006) J Appl Microbiol 100:40–49

    Article  CAS  Google Scholar 

  9. Landete JM, Ferrer S, Pardo I (2007) Food Control 18:1569–1574

    Article  CAS  Google Scholar 

  10. Roig-Sagués AX, Hernàndez-Herrero MM, López-Sabater EI, Rodríguez-Jerez JJ, Mora-Ventura MT (1997) Lett Appl Microbiol 25:309–312

    Article  Google Scholar 

  11. Arena ME, Manca de Nadra MC (2001) J Appl Microbiol 90:158–162

    Article  CAS  Google Scholar 

  12. Landete JM, de las Rivas B, Marcobal A, Muñoz R (2008) Crit Rev Food Sci Nutr 48:697–714

    Article  CAS  Google Scholar 

  13. Bover-Cid S, Hugas M, Izquierdo-Pulido M, Vidal-Carou MC (2001) Int J Food Microbiol 66:185–189

    Article  CAS  Google Scholar 

  14. Actis LA, Smoot JC, Barancin CE, Findlay RH (1999) J Microbiol Methods 39:79–90

    Article  CAS  Google Scholar 

  15. Bover-Cid S, Holzapfel WH (1999) Int J Food Microbiol 53:33–41

    Article  CAS  Google Scholar 

  16. Maijala RL (1993) Lett Appl Microbiol 17:40–43

    Article  CAS  Google Scholar 

  17. Constantini A, Cersosimo M, del Prete V, Garcia-Moruno E (2006) J Food Protect 69:391–396

    Google Scholar 

  18. Landete JM, de las Rivas B, Marcobal A, Muñoz R (2007) Int J Food Microbiol 117:258–269

    Article  CAS  Google Scholar 

  19. Agresti A (1984) Analysis of ordinal categorical data. Wiley, New York

    Google Scholar 

  20. Arena ME, Manca de Nadra MC, Muñoz R (2002) Gene 301:61–66

    Article  CAS  Google Scholar 

  21. de las Rivas B, Marcobal Á, Carrascosa AV, Muñoz R (2006) J Food Protect 69:2509–2514

    Google Scholar 

  22. Marcobal Á, de las Rivas B, Moreno-Arribas V, Muñoz R (2005) J Food Protect 68:874–878

    CAS  Google Scholar 

  23. Sambrook J, MacCallum EF, Russel D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Lab Press, New York

    Google Scholar 

  24. Santos WC, Souza MR, Cerqueira MMOP, Glória MBA (2003) Food Chem 81:595–606

    Article  CAS  Google Scholar 

  25. Marino M, Maifreni M, Bartolomeoli I, Rondinini G (2008) J Appl Microbiol 105:540–549

    Article  CAS  Google Scholar 

  26. Griswold AR, Chen YYM, Burne RA (2004) J Bacteriol 186:1902–1904

    Article  CAS  Google Scholar 

  27. de las Rivas B, Marcobal A, Muñoz R (2005) FEMS Microbiol Lett 44:367–372

    Article  CAS  Google Scholar 

  28. Torriani S, Gatto V, Sembeni S, Tofalo R, Suzzi G, Belletti N, Gardini F, Bover-Cid S (2008) J Food Protect 71:93–101

    CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by projects of Ministry of Education, Youth and Sports of the Czech Republic, MSM7088352101 and MSM0021622416.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leona Buňková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buňková, L., Buňka, F., Hlobilová, M. et al. Tyramine production of technological important strains of Lactobacillus, Lactococcus and Streptococcus . Eur Food Res Technol 229, 533–538 (2009). https://doi.org/10.1007/s00217-009-1075-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-009-1075-3

Keywords

Navigation