Skip to main content
Log in

Current enzymatic milk fermentation procedures

  • Review Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Aside from bacteria, yeasts and moulds, enzymes from animal, vegetal and microbial sources are increasingly utilized for milk fermentation providing a broad spectrum of innovative product conceptions. In order to alter texture and flavour or to improve the nutritional value of milk-based products from different animal milks, microbial and enzymatic fermentation procedures are traditionally established worldwide. To date, genomic and proteomic approaches enable new selection strategies for precise enzymes for modern product applications. Hereby, generating beneficial health ingredients from milk is a main aspect. New insights into the biochemical mechanisms of enzymatic digestion and genetic engineering lead to enzymes with exact defined functions for explicit ripening flavour development or the improvement of texture of fermented milk products. The ability to synthesize complex exo-polysaccharides or to release bioactive peptides by accurate proteolytic activities of enzymes or to enzymatically cross-link the protein matrix in order to modify the texture characteristics of fermented milk products is a raising facet, especially for specific pharma- or nutraceutical applications. This review aimed at discussing the recent research activities on milk fermentative enzymes, with focus on the broad spectrum of enzyme origins and current aspects of genetic engineering. New approaches on proteolytic, lipolytic, glycolytic as well as milk clotting and protein cross-linking enzymatic activities are examined and associated with possible product applications. From technical prospective, advantages and disadvantages of immobilized enzymes within milk fermentation processes are critically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bgaB :

Lactase gene

EMC:

Enzyme-modified cheese

GOS:

Galactooligosaccharides

MTGase:

Microbial transglutaminase

TGase:

Transglutaminase

References

  1. Kosikowski FV (1988) Enzyme behavior and utilization in dairy technology. J Dairy Sci 71:557–573

    Article  CAS  Google Scholar 

  2. Piard JC, El Soda M, Alkhalaf W, Rousseau M, Desmazeaud M, Vassal L, Gripon JC (1986) Acceleration of cheese ripening with liposome-entrapped proteinase. Biotechnol Lett 8(4):241–246

    Article  CAS  Google Scholar 

  3. Johri BN, Jain S, Chouhan S (1985) Enzymes from thermophilic fungi: proteases and lipases. Proc Indian Acad Sci (Plant Sci) 94(2&3):175–196

    CAS  Google Scholar 

  4. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzym Microb Technol 39(2):235–251

    Article  CAS  Google Scholar 

  5. Dutta JR, Banerjee R (2006) Isolation and characterization of a newly isolated Pseudomonas mutant for protease production. Braz Arch Biol Technol 49(1):37–47

    Article  CAS  Google Scholar 

  6. Vishwanatha KS, Rao AGA, Singh SA (2010) Production and characterization of a milk-clotting enzyme from Aspergillus oryzae MTCC 5341. Appl Microbiol Biotechnol 85:1849–1859

    Article  CAS  Google Scholar 

  7. Wu J, Chen H, Chen W (2008) Fermentation parameter and partial biochemical characterization of milk clotting enzyme from Chinese distiller’s yeast. Ann Microb 58(4):717–722

    Article  CAS  Google Scholar 

  8. Shieh CJ, Thi LAP, Shih IL (2009) Milk-clotting enzymes produced by culture of Bacillus subtilis natto. Biochem Eng J 43:85–91

    Article  CAS  Google Scholar 

  9. Visser S (1993) Proteolytic enzymes and their relation to cheese ripening and flavor: an overview. J Dairy Sci 76:329–350

    Article  CAS  Google Scholar 

  10. Lucey JA (2002) ADSA foundation scholar award formation and physical properties of milk protein gels. J Dairy Sci 85:281–294

    Article  CAS  Google Scholar 

  11. Herbert S, Rioublanc A, Bouchet B, Gallant DJ, Dufour E (1999) Fluorescence spectroscopy investigation of acid- or rennet-induced coagulation of milk. J Dairy Sci 82:2056–2062

    Article  CAS  Google Scholar 

  12. Garg SK, Johri BN (1993) Immobilization of milk-clotting proteases. World J Microbiol Biotechnol 9:139–144

    Article  CAS  Google Scholar 

  13. Etayo I, Pérez Elortondo FJ, Gil PF, Albisu M, Virto M, Conde S, Rodriguez Barron LJ, Nájera AI, Gómez-Hidalgo ME, Delgado C, Guerra A, De Renobales M (2006) Hygienic quality, lipolysis and sensory properties of Spanish protected designation of origin ewe’s milk cheeses manufactured with lamb rennet paste. Lait 86:415–434

    Article  CAS  Google Scholar 

  14. Mohanty AK, Mukhopadhyay UK, Kaushik JK, Grover S, Batish VK (2003) Isolation, purification and characterization of chymosin from riverine buffalo (Bubalos bubalis). J Dairy Res 70:37–43

    Article  CAS  Google Scholar 

  15. Fox PF, Wallace JM, Morgan S, Lynch CM, Niland EJ, Tobin J (1996) Acceleration of cheese ripening. Antonie Van Leeuwenhoek 70:271–297

    Article  CAS  Google Scholar 

  16. Fox PF (1989) Proteolysis during cheese manufacture and ripening. J Dairy Sci 72:1379–1400

    Article  CAS  Google Scholar 

  17. Van den Brink HJM, Petersen SG, Rahbek-Nielsen H, Hellmuth K, Harboe M (2006) Increased production of chymosin by glycosylation. J Biotechnol 125:304–331

    Article  Google Scholar 

  18. Addeo F, Alloisio V, Chianese L, Alloisio V (2007) Tradition and innovation in the water buffalo dairy products. Ital J Anim Sci 6(Suppl. 2):51–57

    Google Scholar 

  19. Kindstedt PS, Yun JJ, Barbano DM, Larose KL (1995) Mozzarella cheese: impact of coagulant concentration on chemical composition, proteolysis, and functional properties. J Dairy Sci 78:2591–2597

    Article  CAS  Google Scholar 

  20. Madadlou A, Khosroshahi A, Mousavi ME (2005) Rheology, microstructure, and functionality of low-fat Iranian white cheese made with different concentrations of rennet. J Dairy Sci 88:3052–3062

    Article  CAS  Google Scholar 

  21. Wedholm A, Møller HS, Stensballe A, Lindmark-Månsson H, Karlsson AH, Andersson R, Andrén A, Larsen LB (2008) Effect of minor milk proteins in chymosin separated whey and casein fractions on cheese yield as determined by proteomics and multivariate data analysis. J Dairy Sci 91:3787–3797

    Article  CAS  Google Scholar 

  22. Jiang T, Chen LJ, Xue L, Chen LS (2007) Study on milk-clotting mechanism of rennet-like enzyme from glutinous rice wine: proteolytic property and the cleavage site on κ-casein. J Dairy Sci 90:3126–3133

    Article  CAS  Google Scholar 

  23. Santillo A, Quinto M, Dentico M, Muscio A, Sevi A, Albenzio M (2007) Rennet paste from lambs fed a milk substitute supplemented with Lactobacillus acidophilus: effects on lipolysis in ovine cheese. J Dairy Sci 90:3134–3142

    Article  CAS  Google Scholar 

  24. Santillo A, Caroprese M, Marino R, Albenzio M (2009) Probiotic in rennet paste can affect lipase activity of rennet and lipolysis in ovine cheese. Ital J Anim Sci 8(Suppl. 2):432–434

    Google Scholar 

  25. Santillo A, Albenzio M (2008) Influence of lamb rennet paste containing probiotic on proteolysis and rheological properties of pecorino cheese. J Dairy Sci 91:1733–1742

    Article  CAS  Google Scholar 

  26. Sampaio PN, Fortes AM, Cabral JMS, Pais MS, Fonseca LP (2008) Production and characterization of recombinant cyprosin B in Saccharomyces cerevisiae (W303-1A) strain. J Biosci Bioeng 105(4):305–312

    Article  CAS  Google Scholar 

  27. Picon A, Fernandez J, Gaya P, Medina M, Nuñez M (1999) Short communication: stability of chymosin and cyprosins under milk-coagulation and cheese-ripening conditions. J Dairy Sci 82:2331–2333

    Article  CAS  Google Scholar 

  28. Sarmento AC, Lopes H, Oliveira CS, Vitorino R, Samyn B, Sergeant K, Debyser G, Beeumen JV, Domingues P, Amado F, Pires E, Domingues MRM, Barros MT (2009) Multiplicity of aspartic proteinases from Cynara cardunculus L. Planta 230:429–439

    Article  CAS  Google Scholar 

  29. Sampaio PN, Calado CRC, Sousa L, Bressler DC, Pais MS, Fonseca LP (2010) Optimization of the culture medium composition using response surface methodology for new recombinant cyprosin B production in bioreactor for cheese production. Eur Food Res Technol 231:339–346

    Article  CAS  Google Scholar 

  30. Custódio MF, Goulart AJ, Marques DP, de Campos Giordano R, de Lima Campos Giordano R, Monti R (2005) Hydrolysis of cheese whey proteins with trypsin, chymotrypsin and carboxypeptidase A. Alim Nutr Araraquara 16(2):105–109

  31. Gandhi NN (1997) Applications of lipase. JAOCS 74:621–634

    Article  CAS  Google Scholar 

  32. Riaz M, Shah AA, Hameed A, Hasan F (2010) Characterization of lipase produced by Bacillus sp. FH5 in immobilized and free state. Ann Microbiol 60:169–175

    Article  CAS  Google Scholar 

  33. Seitz EW (1974) Industrial application of microbial lipases: a review. JAOCS 51:12–16

    Article  CAS  Google Scholar 

  34. De Felice M, Gomes T, De Leonardis T (1991) Addition of animal and microbial lipases to curd. Effects on free fatty acid composition during ripening. Lait 71:637–643

    Article  Google Scholar 

  35. Arnold RG, Shahani KM, Dwivedi BK (1974) Application of lipolytic enzymes to flavor development in dairy products. J Dairy Sci 58(8):1127–1143

    Article  Google Scholar 

  36. De Maria L, Vind J, Oxenbøll KM, Svendsen A, Patkar S (2007) Phospholipases and their industrial applications. Appl Microbiol Biotechnol 74:290–300

    Article  CAS  Google Scholar 

  37. Lilbæk HM, Broe ML, Høier E, Fatum TM, Ipsen R, Sørensen NK (2006) Improving the yield of mozzarella cheese by phospholipase treatment of milk. J Dairy Sci 89:4114–4125

    Article  Google Scholar 

  38. Nielsen PH, Høier E (2009) Environmental assessment of yield improvements obtained by the use of the enzyme phospholipase in mozzarella cheese production. Int J Life Cycle Assess 14:137–143

    Article  CAS  Google Scholar 

  39. Isobe N, Suzuki M, Oda M, Tanabe S (2008) Enzyme-modified cheese exerts inhibitory effects on allergen permeation in rats suffering from indomethacin-induced intestinal inflammation. Biosci Biotechnol Biochem 72(7):1740–1745

    Article  CAS  Google Scholar 

  40. Moosavi-Nasab M, Radi M, Jouybari HA (2010) Investigation of enzyme modified cheese production by two species of Aspergillus. Afr J Biotechnol 9(4):508–511

    CAS  Google Scholar 

  41. Kilcawley KN, Wilkinson MG, Fox PF (1998) Review: enzyme-modified cheese. Int Dairy J 8:1–10

    Article  CAS  Google Scholar 

  42. Chen W, Chen H, Xia Y, Zhao J, Tian F, Zhang H (2008) Production, purification, and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus. J Dairy Sci 91:1751–1758

    Article  CAS  Google Scholar 

  43. Neri DFM, Balcão VM, Cost RS, Rocha ICAP, Ferreira EMFC, Torres DPM, Rodrigues LRM, Carvalho LB Jr, Teixeira JA (2009) Galacto-oligosaccharides production during lactose hydrolysis by free Aspergillus oryzae β-galactosidase and immobilized on magnetic polysiloxane-polyvinyl alcohol. Food Chem 115:92–99

    Article  CAS  Google Scholar 

  44. Gheytanchi E, Heshmati F, Shargh BK, Nowroozi J, Movahedzadeh F (2010) Study on β-galactosidase enzyme produced by isolated lactobacilli from milk and cheese. Afr J Microbiol Res 4(6):454–458

    CAS  Google Scholar 

  45. Mahoney RR (1998) Galactosyl-oligosaccharide formation during lactose hydrolysis. Food Chem 63(2):147–154

    Article  CAS  Google Scholar 

  46. Nagaraj M, Sharanagouda B, Manjunath H, Manafi M (2009) Standardization of different levels of lactose hydrolysis in the preparation of lactose hydrolyzed yoghurt. Iranian J Vet Res 10(2):132–136

    Google Scholar 

  47. Vesa TH, Marteau P, Korpela R (2000) Lactose intolerance. J Am Coll Nutr 19(2):165S–175S

    CAS  Google Scholar 

  48. Hellerová K, Čurda L (2009) Influence of type of substrate and enzyme concentration on formation of galacto-oligosaccharides. Czech J Food Sci 27(special issue):S372–S374

    Google Scholar 

  49. Hung MN, Lee BH (2002) Purification and characterization of a recombinant β-galactosidase with transgalactosylation activity from Bifidobacterium infantis HL96. Appl Microbiol Biotechnol 58:439–445

    Article  CAS  Google Scholar 

  50. Nguyen TH, Splechtna B, Krasteva S, Kneifel W, Kulbe KD, Divne C, Haltrich D (2007) Characterization and molecular cloning of a heterodimeric β-galactosidase from the probiotic strain Lactobacillus acidophilus R22. FEMS Microbiol Lett 269:136–144

    Article  CAS  Google Scholar 

  51. Abd-Rabo FHR, El-Dieb SM, Abd-El-Fattah AM, Sakr SS (2010) Natural state changes of cows’ and buffaloes’ milk proteins induced by microbial transglutaminase. J Am Sci 6(9):612–620

    Google Scholar 

  52. Milanović SD, Carić MĐ, Đurić MS, Iličić MD, Duraković KG (2007) Physico-chemical properties of probiotic yoghurt produced with transglutaminase. BIBLID: 1450-7188 38:45–52

  53. Zhu Y, Rinzema A, Tramper J, Bol J (1995) Microbial transglutaminase—a review of its production and application in food processing. Appl Microb Biotechnol 44:277–282

    Article  CAS  Google Scholar 

  54. Farnsworth JP, Li J, Hendricks GM, Guo MR (2006) Effects of transglutaminase treatment on functional properties and probiotic culture survivability of goat milk yogurt. Small Ruminant Res 65:113–121

    Article  Google Scholar 

  55. Bönisch MP, Huss M, Lauber S, Kulozik U (2007) Yoghurt gel formation by means of enzymatic protein cross-linking during microbial fermentation. Food Hydrocolloids 21(4):585–595

    Google Scholar 

  56. Mounsey JS, O’Kennedy BT, Kelly PM (2005) Influence of transglutaminase treatment on properties of micellar casein and products made therefrom. Lait 85:405–418

    Article  CAS  Google Scholar 

  57. Ozer B, Kirmaci HA, Oztekin S, Hayaloglu A, Atamer M (2007) Incorporation of microbial transglutaminase into non-fat yogurt production. Int Dairy J 17:199–207

    Article  CAS  Google Scholar 

  58. Iličić MD, Carić MD, Milanović SD, Dokić LP, Đurić MS, Bošnjak GS, Duraković KG (2008) Viscosity changes of probiotic yoghurt with transglutaminase during storage. BIBLID: 1450-7188 39:11–19

  59. Lorenzen PC, Neve H, Mautner A, Schlimme E (2002) Effect of enzymatic cross-linking of milk proteins on functional properties of set-style yoghurt. Int J Dairy Technol 55(3):152–157

    Article  CAS  Google Scholar 

  60. Volken de Souza CF, Guimarães Venzke J, Hickmann Flôres S, Ayub MAZ (2009) In vivo evaluation of cross-linked milk and wheat proteins mediated by microbial transglutaminase in white wistar rats. Am J Food Technol 4(3):96–107

    Article  CAS  Google Scholar 

  61. O’Sullivan MM, Lorenzen PC, O’Connell JE, Kelly AL, Schlimme E, Fox PF (2001) Short communication: influence of transglutaminase on the heat stability of milk. J Dairy Sci 84:1331–1334

    Article  Google Scholar 

  62. Rodriguez-Nogales JM (2005) Enzymatic cross-linking of ewe’s milk proteins by transglutaminase. Eur Food Res Technol 221:692–699

    Article  CAS  Google Scholar 

  63. Lauber S, Henle T, Klostermeyer H (2000) Relationship between the crosslinking of caseins by transglutaminase and the gel strength of yoghurt. Eur Food Res Technol 210:305–309

    Article  CAS  Google Scholar 

  64. Yüksel Z, Erdem YK (2010) The influence of transglutaminase treatment on functional properties of set yoghurt. Int J Dairy Technol 63(1):86–97

    Article  Google Scholar 

  65. Wróblewska B, Kaliszewska A, Kołakowski P, Pawlikowska K, Troszyńska A (2010) Impact of transglutaminase reaction on the immunoreactive and sensory quality of yoghurt starter. World J Microbiol Biotechnol. doi:10.1007/s11274-010-0446-z

  66. Ercili-Cura D, Lille M, Buchert J, Lantto R (2008) The effect of the crosslinking enzyme tyrosinase on gel formation and texture of acid-induced milk gels. Annu Trans Nordic Rheol Soc 16

  67. Kosikowski FV (1974) Symposium: continuous cheesemaking: potential of enzymes in continuous cheese making. J Dairy Sci 58(7):994–1000

    Article  Google Scholar 

  68. Fernandes P (2010) Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme Res, Article ID 862537, p 19

  69. Mariotti MP, Yamanaka H, Araujo AR, Trevisan HC (2008) Hydrolysis of whey lactose by immobilized β-galactosidase. Braz Arch Biol Technol 51(6):1233–1240

    Article  CAS  Google Scholar 

  70. Picon A, Serrano C, Gaya P, Medina M, Nuñez M (1996) The effect of liposome-encapsulated cyprosins on manchego cheese ripening. J Dairy Sci 79:1699–1705

    Article  CAS  Google Scholar 

  71. Jaros D, Pätzold J, Schwarzenbolz U, Rohm H (2006) Small and large deformation rheology of acid gels from transglutaminase treated milks. FOBI 1:124–132

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Beermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beermann, C., Hartung, J. Current enzymatic milk fermentation procedures. Eur Food Res Technol 235, 1–12 (2012). https://doi.org/10.1007/s00217-012-1733-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-012-1733-8

Keywords

Navigation