Skip to main content
Log in

The Topological Vertex

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct a cubic field theory which provides all genus amplitudes of the topological A-model for all non-compact toric Calabi-Yau threefolds. The topology of a given Feynman diagram encodes the topology of a fixed Calabi-Yau, with Schwinger parameters playing the role of Kähler classes of the threefold. We interpret this result as an operatorial computation of the amplitudes in the B-model mirror which is the quantum Kodaira-Spencer theory. The only degree of freedom of this theory is an unconventional chiral scalar on a Riemann surface. In this setup we identify the B-branes on the mirror Riemann surface as fermions related to the chiral boson by bosonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Witten, E.: Topological sigma models. Commun. Math. Phys. 118, 411 (1988); On the structure of the topological phase of two-dimensional gravity. Nucl. Phys. B 340, 281 (1990)

    Google Scholar 

  2. Gopakumar, R., Vafa, C.: On the gauge theory/geometry correspondence. Adv. Theor. Math. Phys. 3, 1415 (1999)

    Google Scholar 

  3. Aganagic, M., Mariño, M., Vafa, C.: All loop topological string amplitudes from Chern-Simons theory. http://arxiv.org/abs/hep-th/0206164, 2002

  4. Diaconescu, D.E., Florea, B., Grassi, A.: Geometric transitions and open string instantons. Adv. Theor. Math. Phys. 6, 619–642 (2003); Geometric transitions, del Pezzo surfaces and open string instantons. Adv. Theor. Math. Phys. 6, 643–702 (2003)

    Google Scholar 

  5. Iqbal, A.: All genus topological string amplitudes and 5-brane webs as Feynman diagrams. http://arxiv.org/abs/hep-th/0207114, 2003; Iqbal, A., Kashani-Poor, A.K.; To appear

  6. Iqbal, A., Kashani-Poor, A.K.: Instanton counting and Chern-Simons theory. Adv. Theor. Math. Phys. 7, 457–497 (2004)

    Google Scholar 

  7. Diaconescu, D.-E., Grassi, A.: Unpublished manuscript

  8. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Witten, E.: Phases of N = 2 theories in two dimensions. Nucl. Phys. B 403, 159 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Aspinwall, P.S., Greene, B.R., Morrison, D.R.: Calabi-Yau moduli space, mirror manifolds and spacetime topology change in string theory. Nucl. Phys. B 416, 414 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Aganagic, M., Klemm, A., Vafa, C.: Disk instantons, mirror symmetry and the duality web. Z. Naturforsch. A 57, 1 (2002)

    Google Scholar 

  12. Aharony, O., Hanany, A.: Branes, superpotentials and superconformal fixed points. Nucl. Phys. B 504, 239 (1997); Aharony, O., Hanany, A., Kol, B.: Webs of (p,q) 5-branes, five dimensional field theories and grid diagrams. JHEP 9801, 002 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Leung, N.C., Vafa, C.: Branes and toric geometry. Adv. Theor. Math. Phys. 2, 91 (1998)

    Google Scholar 

  14. Hori, K., Vafa, C.: Mirror symmetry. http://arxiv.org/abs/hep-th/0002222, 2000

  15. Hori, K., Iqbal, A., Vafa, C.: D-branes and mirror symmetry. http://arxiv.org/abs/hep-th/0005247, 2000

  16. Kontsevich, M.: Enumeration of rational curves via torus actions. In: The moduli space of curves, Basel-Boston: Birkhäuser, 1995, p. 335

  17. Harvey, R., Lawson, H.B., Jr.: Calibrated geometries. Acta Math. 148, 47 (1982)

    MathSciNet  MATH  Google Scholar 

  18. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351 (1989)

    MATH  Google Scholar 

  19. Aganagic, M., Vafa, C.: Mirror symmetry, D-branes and counting holomorphic discs. http://arxiv.org/abs/hep-th/0012041, 2000

  20. Mariño, M., Vafa, C.: Framed knots at large N. hep-th/0108064

  21. Vafa, C.: Brane/anti-brane systems and U(N|M) supergroup. http://arxiv.org/abs/hep-th/0101218, 2001

  22. Ooguri, H., Vafa, C.: Knot invariants and topological strings. Nucl. Phys. B 577, 419 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nekrasov, N.A.: Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2004)

    Google Scholar 

  24. Losev, A.S., Marshakov, A., Nekrasov, N.A.: Small instantons, little strings and free fermions. http://arxiv.org/abs/hep-th/0302191, 2003

  25. Work in progress with Robbert Dijkgraaf

  26. Ishibashi, N., Matsuo, Y., Ooguri, H.: Soliton Equations And Free Fermions On Riemann Surfaces. Mod. Phys. Lett. A 2, 119 (1987)

    MathSciNet  Google Scholar 

  27. Vafa, C.: Operator Formulation On Riemann Surfaces. Phys. Lett. B 190, 47 (1987)

    Article  MathSciNet  Google Scholar 

  28. Álvarez-Gaumé, L., Gómez, C., Moore, G.W., Vafa, C.: Strings In The Operator Formalism. Nucl. Phys. B 303, 455 (1988)

    Article  MathSciNet  Google Scholar 

  29. Aganagic, M., Klemm, A., Mariño, M., Vafa, C.: Matrix model as a mirror of Chern-Simons theory. JHEP 02, 010 (2004)

    Article  Google Scholar 

  30. Shenker, S.: Private communication, 1995

  31. Ooguri, H., Vafa, C.: Worldsheet derivation of a large N duality. Nucl. Phys. B 641, 3 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Witten, E.: Chern-Simons gauge theory as a string theory. In: The Floer memorial volume, Hofer, H., Taubes, C.H., Weinstein, A., Zehner, E. (eds.), Basel-Boston: Birkhäuser, 1995, p. 637

  33. Labastida, J.M.F., Mariño, M.: Polynomial invariants for torus knots and topological strings. Commun. Math. Phys. 217, 423 (2001)

    Google Scholar 

  34. Labastida, J.M.F., Mariño, M., Vafa, C.: Knots, links and branes at large N. JHEP 11, 007 (2000)

    MATH  Google Scholar 

  35. Ramadevi, P., Sarkar, T.: On link invariants and topological string amplitudes. Nucl. Phys. B 600, 487 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Verlinde, E.: Fusion rules and modular transformations in 2-D conformal field theory. Nucl. Phys. B 300, 360 (1988)

    Article  MathSciNet  Google Scholar 

  37. Morton, H.R., Lukac, S.G.: The HOMFLY polynomial of the decorated Hopf link. J. Knot Theory Ramif. 12, 395–416 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lukac, S.G.: HOMFLY skeins and the Hopf link. Ph.D. Thesis, University of Liverpool, 2001

  39. Macdonald, I.G.: Symmetric functions and Hall polynomials. 2nd edition, Oxford: Oxford University Press, 1995

  40. Gopakumar, R., Vafa, C.: M-theory and topological strings, II. http://arxiv.org/abs/hep-th/9812127, 1998

  41. Antoniadis, I., Gava, E., Narain, K.S., Taylor, T.R.: Topological amplitudes in string theory. Nucl. Phys. B 413, 162 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  42. Labastida, J.M.F., Mariño, M.: A new point of view in the theory of knot and link invariants. J. Knot Theory Ramif, 11, 173 (2002)

    Google Scholar 

  43. Chiang, T.M., Klemm, A., Yau, S.T., Zaslow, E.: Local mirror symmetry: Calculations and interpretations. Adv. Theor. Math. Phys. 3, 495 (1999)

    Google Scholar 

  44. Hosono, S.: Counting BPS states via holomorphic anomaly equations. http://arxiv.org/abs/hep-th/0206206, 2002

  45. Graber, T., Zaslow, E.: Open-string Gromov-Witten invariants: calculations and a mirror ‘theorem’. http://arxiv.org/abs/hep-th/0109075, 2001

  46. Klemm, A., Zaslow, E.: Local mirror symmetry at higher genus. In: Winter School on Mirror Symmetry, Vector bundles and Lagrangian Submanifolds, Providence, RI: American Mathematical Society, 2001, p. 183

  47. Katz, S., Liu, C-C.: Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc. Adv. Theor. Math. Phys. 5, 1 (2002)

    Google Scholar 

  48. Faber, C.: Algorithms for computing intersection numbers of curves, with an application to the class of the locus of Jacobians. In: New trends in algebraic geometry, Cambridge: Cambridge Univ. Press, 1999

  49. Lerche, W., Mayr, P.: On = 1 mirror symmetry for open type II strings. http://arxiv.org/abs/hep-th/0111113, 2001; Govindarajan, S., Jayaraman, T., Sarkar, T.: Disc instantons in linear sigma models. Nucl. Phys. B 646, 498 (2002)

    Article  Google Scholar 

  50. Mayr, P.: Summing up open string instantons and = 1 string amplitudes. http://arxiv.org/abs/hep-th/0203237, 2002

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by N. Nekrasov

Acknowledgement We would like to thank D.-E.Diaconescu, R. Dijkgraaf, J. Gomis, A. Grassi, A. Iqbal, A. Kapustin, S. Katz, V. Kazakov, I. Kostov, C-C. Liu, H. Ooguri, J. Schwarz, S. Shenker and E. Zaslow for valuable discussions (and the cap!). The research of MA and CV was supported in part by NSF grants PHY-9802709 and DMS-0074329. In addition, CV thanks the hospitality of the theory group at Caltech, where he is a Gordon Moore Distinguished Scholar. M.A. is grateful to the Caltech theory group for hospitality during part of this work. A.K. is supported in part by the DFG grant KL-1070/2-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aganagic, M., Klemm, A., Mariño, M. et al. The Topological Vertex. Commun. Math. Phys. 254, 425–478 (2005). https://doi.org/10.1007/s00220-004-1162-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1162-z

Keywords

Navigation