Skip to main content
Log in

Global Stability of Vortex Solutions of the Two-Dimensional Navier-Stokes Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Both experimental and numerical studies of fluid motion indicate that initially localized regions of vorticity tend to evolve into isolated vortices and that these vortices then serve as organizing centers for the flow. In this paper we prove that in two dimensions localized regions of vorticity do evolve toward a vortex. More precisely we prove that any solution of the two-dimensional Navier-Stokes equation whose initial vorticity distribution is integrable converges to an explicit self-similar solution called “Oseen’s vortex”. This implies that the Oseen vortices are dynamically stable for all values of the circulation Reynolds number, and our approach also shows that these vortices are the only solutions of the two-dimensional Navier-Stokes equation with a Dirac mass as initial vorticity. Finally, under slightly stronger assumptions on the vorticity distribution, we give precise estimates on the rate of convergence toward the vortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Commun. Partial Differ. Eqs. 26(1–2), 43–100 (2001)

    Google Scholar 

  2. Ben-Artzi, M.: Global solutions of two-dimensional Navier-Stokes and Euler equations. Arch. Rational Mech. Anal. 128(4), 329–358 (1994)

    Google Scholar 

  3. Bernoff, A.J., Lingevitch, J.F.: Rapid relaxation of an axisymmetric vortex. Phys. Fluids 6(11), 3717–3721 (1994)

    Google Scholar 

  4. Brandolese, L.: Localisation, Oscillations et Comportement Asymptotique pour les Équations de Navier-Stokes. PhD thesis, École Normale Supérieure de Cachan, 2001

  5. Brandolese, L.: On the localization of symmetric and asymmetric solutions of the Navier-Stokes equations in Rn C. R. de l’Acad. de Science de Paris, 332(1), 125–130 (2001)

    Google Scholar 

  6. Brandolese, L.: Space-time decay of Navier-Stokes flows invariant under rotations. Math. Ann. 329, 685–706 (2004)

    Google Scholar 

  7. Brezis, H.: Remarks on the preceding paper by M. Ben-Artzi: Global solutions of two-dimensional Navier-Stokes and Euler equations. Arch. Rational Mech. Anal., 128(4), 359–360 (1994)

    Google Scholar 

  8. Cannone, M., Planchon, F.: Self-similar solutions for Navier-Stokes equations in R3. Commun. Partial Differ. Eqs. 21(1–2), 179–193 (1996)

    Google Scholar 

  9. Carlen, E.A., Loss, M.: Optimal smoothing and decay estimates for viscously damped conservation laws, with applications to the 2-D Navier-Stokes equation. Duke Math. J. 81(1), 135–157 (1996)

    Google Scholar 

  10. Carpio, A.: Asymptotic behavior for the vorticity equations in dimensions two and three Commun. Partial Differ. Eqs. 19(5–6), 827–872 (1994)

    Google Scholar 

  11. Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. New York-Toronto-London: McGraw-Hill Book Company, Inc., 1955

  12. Cottet, G.-H.: Équations de Navier-Stokes dans le plan avec tourbillon initial mesure. C. R. Acad. Sci. Paris Sér. I Math. 303(4), 105–108 (1986)

    Google Scholar 

  13. Engel, K.-J., Nagel, R.: One-Parameter semigroups for linear evolution equations. Graduate Texts in Mathematics. New York: Springer-Verlag, 2000

  14. Gallay, Th., Wayne, C.E.: Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on R2. Arch. Ration. Mech. Anal. 163(3), 209–258 (2002)

    Google Scholar 

  15. Gallay, Th., Wayne, C.E.: Long-time asymptotics of the Navier-Stokes and vorticity equations on ℝ3. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 360(1799), 2155–2188 (2002); Recent developments in the mathematical theory of water waves (Oberwolfach 2001)

    Google Scholar 

  16. Giga, M.-H., Giga, Y.: Nonlinear partial differential equations: asymptotic behaviour of solutions and self-similar solutions. Book in preparation

  17. Giga, Y., Kambe, T.: Large time behavior of the vorticity of two-dimensional viscous flow and its application to vortex formation. Commun. Math. Phys. 117(4), 549–568 (1988)

    Google Scholar 

  18. Giga, Y., Miyakawa, T., Osada, H.: Two-dimensional Navier-Stokes flow with measures as initial vorticity Arch. Rational Mech. Anal. 104(3), 223–250 (1988)

    Google Scholar 

  19. Glimm, J., Jaffe, A.: Quantum physics. Second edition, New York: Springer-Verlag, 1987

  20. Henry, D.: Geometric theory of semilinear parabolic equations. Berlin: Springer-Verlag, 1981

  21. Kato, T.: The Navier-Stokes equation for an incompressible fluid in R2 with a measure as the initial vorticity. Differ. Integral Eqs. 7(3–4), 949–966 (1994)

    Google Scholar 

  22. Lions, P.-L., Villani, C.: Régularité optimale de racines carrées. C. R. Acad. Sci. Paris Sér. I Math. 321(12), 1537–1541 (1995)

    Google Scholar 

  23. Miller, J., Bernoff, A.: Rates on convergence to self-similar solutions of Burgers’ equation. Stud. Appl. Math. 111(1), 29–40 (2003)

    Google Scholar 

  24. Osada, H.: Diffusion processes with generators of generalized divergence form. J. Math. Kyoto Univ. J. Math. Kyoto Univ. 27(4), 597–619 (1987)

    Google Scholar 

  25. Prochazka, A., Pullin, D.I.: On the two-dimensional stability of the axisymmetric Burgers vortex. Phys. Fluids 7(7), 1788–1790 (1995)

    Google Scholar 

  26. Protter, M.H., Weinberger, H.F.: Maximum principles in differential equations. Englewood Cliffs, N.J.: Prentice-Hall Inc., 1967

  27. Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York: Academic Press, 1978

  28. Rossi, L., Graham-Eagle, J.: On the existence of two-dimensional, localized, rotating, self-similar vortical structures. SIAM J. Appl. Math. 62(6), 2114–2128 (2002)

    Google Scholar 

  29. Toscani, G. Entropy production and the rate of convergence to equilibrium for the Fokker-Planck equation. Quart. Appl. Math. 57(3), 521–541 (1999)

    Google Scholar 

  30. Villani, C.: A review of mathematical topics in collisional kinetic theory In: Handbook of mathematical fluid dynamics. Vol. I, Amsterdam: North-Holland, 2002, pp. 71–305

  31. Witelski, Th.P., Bernoff, A.J.: Self-similar asymptotics for linear and nonlinear diffusion equations. Studies in Appl. Math. 100, 153–193 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Kupiainen

Acknowledgement The first author is indebted to J. Dolbeault and, especially, to C. Villani for suggesting the beautiful idea of using the Boltzmann entropy functional in the context of the two-dimensional Navier-Stokes equation. The research of C.E.W. is supported in part by the NSF under grant DMS-0103915.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallay, T., Wayne, C. Global Stability of Vortex Solutions of the Two-Dimensional Navier-Stokes Equation. Commun. Math. Phys. 255, 97–129 (2005). https://doi.org/10.1007/s00220-004-1254-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1254-9

Keywords

Navigation