Skip to main content
Log in

Global Existence for the Einstein Vacuum Equations in Wave Coordinates

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove global stability of Minkowski space for the Einstein vacuum equations in harmonic (wave) coordinate gauge for the set of restricted data coinciding with the Schwarzschild solution in the neighborhood of space-like infinity. The result contradicts previous beliefs that wave coordinates are “unstable in the large” and provides an alternative approach to the stability problem originally solved ( for unrestricted data, in a different gauge and with a precise description of the asymptotic behavior at null infinity) by D. Christodoulou and S. Klainerman.

Using the wave coordinate gauge we recast the Einstein equations as a system of quasilinear wave equations and, in absence of the classical null condition, establish a small data global existence result. In our previous work we introduced the notion of a weak null condition and showed that the Einstein equations in harmonic coordinates satisfy this condition.The result of this paper relies on this observation and combines it with the vector field method based on the symmetries of the standard Minkowski space.

In a forthcoming paper we will address the question of stability of Minkowski space for the Einstein vacuum equations in wave coordinates for all “small” asymptotically flat data and the case of the Einstein equations coupled to a scalar field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alinhac, S.: Rank 2 singular solutions for quasilinear wave equations. Int. Math. Res. Notices (18), 955–984 (2000)

  2. Alinhac, S.: The null condition for quasilinear wave equations in two dimensions I. Invent. Math. 145, 597–618 (2001)

    Google Scholar 

  3. Alinhac, S.: An example of blowup at infinity for a quasilinear wave equation. Asterisque 284, 1–91 (2003)

    Google Scholar 

  4. Choquet-Bruhat, Y.: Theoreme d’existence pour certains systemes d’equations aux derivees partielles nonlineaires. Acta Math. 88, 141–225 (1952)

    Google Scholar 

  5. Choquet-Bruhat, Y.: Un theoreme d’instabilite pour certaines equations hyperboliques non lineaires. C. R. Acad. Sci. Paris Sr. A-B 276, A281–A284 (1973)

  6. Choquet-Bruhat, Y.: The null condition and asymptotic expansions for the Einstein’s equations. Ann. Phys. (Leipzig) 9, 258–266 (2000)

    Google Scholar 

  7. Choquet-Bruhat,Y., Geroch, R.P.: Global aspects of the Cauchy problem in General Relativity. Commun. Math. Phys. 14, 329–335 (1969)

    Google Scholar 

  8. Christodoulou, D.: Global solutions of nonlinear hyperbolic equations for small initial data. Commun. Pure Appl. Math. 39, 267–282 (1986)

    MathSciNet  MATH  Google Scholar 

  9. Christodoulou, D.: The Global Initial Value Problem in General Relativity. In: The Ninth Marcel Grossmann Meeting (Rome 2000), V.G. Gurzadyan, R.T. Jansen, (eds.), R. Ruffini, editor and series editor, River Edge, NJ: World Scientific, 2002, pp. 44–54

  10. Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space. Princeton Mathematical Series 41. Princeton, NJ: Princeton University Press, 1993

  11. Chruściel, P. T., Delay, E.: Existence of non-trivial, vacuum, asymptotically simple spacetimes. Class. Quantum Grav. 19(9), L71–L79 (2002)

    Google Scholar 

  12. Corvino, J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214(1), 137–189 (2000)

    Google Scholar 

  13. Fock, V.: The theory of space, time and gravitation. New York: The Macmillan Co., 1964

  14. Friedrich, H.: On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure. Commun. Math. Phys. 107(4), 587–609 (1986)

    Google Scholar 

  15. Hawking, S., Ellis, G.: The large scale structure of space-time. Cambridge: Cambridge University Press, 1973

  16. Hörmander, L.: The lifespan of classical solutions of nonlinear hyperbolic equations. In: Pseudodifferential operators (Oberwolfach, 1986), Lecture Notes in Math. 1256, Berlin: Springer, 1987, pp. 214–280

  17. Hörmander, L.: Lectures on Nonlinear hyperbolic differential equations. Berlin-Heidelberg-New York: Springer Verlag, 1997

  18. Hörmander, L.: On the fully nonlinear Cauchy probelm with small initial data II. In: Microlocal analysis and nonlinear waves (Minneapolis, MN, 1988–1989), IMA Vol. Math. Appl. 30, New York: Springer, 1991, pp. 51–81

  19. John, F.: Blow-up for quasilinear wave equations in three space dimensions . Commun. Pure Appl. Math. 34(1), 29–51 (1981)

    Google Scholar 

  20. John, F.: Blow-up of radial solutions of u tt = c2(u t u in three space dimensions. Mat. Appl. Comput. 4(1), 3–18 (1985)

    Google Scholar 

  21. John, F., Klainerman, S.: Almost global existence to nonlinear wave equations in three space dimensions. Commun. Pure Appl. Math. 37, 443–455 (1984)

    Google Scholar 

  22. Klainerman, S.: Uniform decay estimates and the Lorentz invariance of the wave equation. Commun. Pure Appl. Math. 38, 321–332 (1985)

    MathSciNet  MATH  Google Scholar 

  23. Klainerman, S.: The null condition and global existence to nonlinear wave equations. Lect. Appl. Math. 23, 293–326 (1986)

    MATH  Google Scholar 

  24. Klainerman, S., Nicolo, F.: The evolution problem in general relativity. Basel-Boston: Birkhäuser, 2003

  25. Klainerman, S., Nicolo, F.: Peeling properties of asymptotically flat solutions to the Einstein vacuum equations. Class. Quant. Grav. 20, 3215–3257 (2003)

    Google Scholar 

  26. Lindblad, H.: On the lifespan of solutions of nonlinear wave equations with small initial data. Commun. Pure Appl. Math 43, 445–472 (1990)

    Google Scholar 

  27. Lindblad, H.: Global solutions of nonlinear wave equations. Commun. Pure Appl. Math. 45(9), 1063–1096 (1992)

    Google Scholar 

  28. Lindblad, H., Rodnianski, I.: The weak null condition for Einstein’s equations. C. R. Math. Acad. Sci. Paris 336(11), 901–906 (2003)

    Google Scholar 

  29. Shu, W-T.: Asymptotic properties of the solutions of linear and nonlinear spin field equations in Minkowski space. Commun. Math. Phys 140(3), 449–480 (1991)

    Google Scholar 

  30. Schoen, R., Yau, S.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45–76 (1979)

    Google Scholar 

  31. Wald, R.: General Relativity. Chicago, IL: Chicago Univ. Press, 1984

  32. Witten, E.: A new proof of the positive mass theorem. Commun. Math. Phys. 80, 381–402 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindblad, H., Rodnianski, I. Global Existence for the Einstein Vacuum Equations in Wave Coordinates. Commun. Math. Phys. 256, 43–110 (2005). https://doi.org/10.1007/s00220-004-1281-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1281-6

Keywords

Navigation