Skip to main content
Log in

Noncommutative Spectral Invariants and Black Hole Entropy

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract.

We consider an intrinsic entropy associated with a local conformal net by the coefficients in the expansion of the logarithm of the trace of the “heat kernel” semigroup. In analogy with Weyl theorem on the asymptotic density distribution of the Laplacian eigenvalues, passing to a quantum system with infinitely many degrees of freedom, we regard these coefficients as noncommutative geometric invariants. Under a natural modularity assumption, the leading term of the entropy (noncommutative area) is proportional to the central charge c, the first order correction (noncommutative Euler characteristic) is proportional to log , where is the global index of , and the second spectral invariant is again proportional to c.

We give a further general method to define a mean entropy by considering conformal symmetries that preserve a discretization of S1 and we get the same value proportional to c.

We then make the corresponding analysis with the proper Hamiltonian associated to an interval. We find here, in complete generality, a proper mean entropy proportional to log with a first order correction defined by means of the relative entropy associated with canonical states.

By considering a class of black holes with an associated conformal quantum field theory on the horizon, and relying on arguments in the literature, we indicate a possible way to link the noncommutative area with the Bekenstein-Hawking classical area description of entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki, H.: Relative Hamiltonians for faithful normal states of a von Neumann algebra. Pub. R.I.M.S., Kyoto Univ. 9, 165–209 (1973)

    Google Scholar 

  2. Ashtekar, A., Baez, J., Krasnov, K.: Quantum geometry of isolated horizons and black hole entropy. Adv. Theor. Math. Phys. 4, 1–94 (2001)

    Google Scholar 

  3. Bekenstein, J.D.: Generalized second law of thermodynamics in black hole physics. Phys. Rev. D 9, 3292–3300 (1974)

    Article  Google Scholar 

  4. Bekenstein, J.D.: Holographic bound from the second low of thermodynamics. Phy. Lett. B 481, 339–345 (2000)

    Article  CAS  Google Scholar 

  5. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variations. Cambridge: Cambridge Univ. Press, 1987

  6. Böckenhauer, J., Evans, D.E.: Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors. Commun. Math. Phys. 213, 267–289 (2000)

    Article  Google Scholar 

  7. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics. Vol. 2, Texts and monographs in Physics, Berlin Heidelberg: Springer-Verlag, 1997

  8. Brunetti, R., Guido, D., Longo, R.: Modular structure and duality in conformal quantum field theory. Commun. Math. Phys. 156 201–219 (1993)

  9. Buchholz, D., Wichmann, E.: Causal independence and the energy-level density of states in local quantum field theory. Commun. Math. Phys. 106, 321 (1986)

    Article  Google Scholar 

  10. Cardy, J.L.: Operator content of two-dimensional conformally invariant theories. Nucl. Phys. B 270, 186–204 (1986)

    Article  Google Scholar 

  11. Carlip, S.: Entropy from conformal field theory at Killing horizons. Class. Quantum Grav. 16, 3327–3348 (1999)

    Google Scholar 

  12. Carpi, S., Weiner, M.: On the uniqueness of diffeomorphism symmetry in Conformal Field Theory. To appear in Commun. Math. Phys. DOI 10.1007/s00220-005-1335-4 (2005); Weiner, M.: Work in progress

  13. Chamseddine, A.H., Connes, A.: The spectral action principle. Commun. Math. Phys. 186, 731–750 (1997); Kastler, D.: Noncommutative geometry and fundamental physical interactions: The Lagrangian level – Historical sketch and description of the present situation. J. Math. Phys. 41, 3867–3891 (2000)

    Article  Google Scholar 

  14. Connes, A.: On a spatial theory of von Neumann algebras. J. Funct. Anal. 35, 153–164 (1980)

    Google Scholar 

  15. Connes, A.: Noncommutative Geometry. London-New York: Academic Press, 1994

  16. Doplicher, S., Fredenhagen, K., Roberts, J.E.: Spacetime quantization induced by classical gravity. Phys. Lett. B 331(1–2), 39–44 (1994)

  17. Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics. I & II. Commun. Math. Phys. 23, 199–230 (1971) and 35, 49–85 (1974)

    Google Scholar 

  18. Evans, D.E., Kawahigashi, Y.: Quantum Symmetries on Operator Algebras. Oxford: Oxford University Press, 1998

  19. Fröhlich, J., Gabbiani, F.: Operator algebras and conformal field theory. Commun. Math. Phys. 155, 569–640 (1993)

    Google Scholar 

  20. Guido, D., Longo, R.: The conformal spin and statistics theorem. Commun. Math. Phys. 181, 11 (1996)

    Google Scholar 

  21. Guido, D., Longo, R.: A converse Hawking-Unruh effect and dS2/CFT correspondence. Ann. H. Poincaré 4(6), 1169–1218 (2003)

    Google Scholar 

  22. Guido, D., Longo, R., Roberts, J.E., Verch, R.: Charged sectors, spin and statistics in quantum field theory on curved spacetimes. Rev. Math. Phys. 13, 125–198 (2001)

    Google Scholar 

  23. Haag, R.: Local Quantum Physics. Berlin-Heidelberg-New York: Springer-Verlag, 1996

  24. Haagerup, U.: Operator valued weights in von Neumann algebras. I & II. J. Funct. Anal. 32, 175–206 (1979) and 33, 339–361 (1979)

    Google Scholar 

  25. ‘t Hooft, G.: Dimensional reduction in quantum gravity. In: A. Aly, J. Ellis, S. Randjbar-Daemi (eds.), Salam-festschrifft, Singapore, World Scientific, 1993

  26. Huang, Y.-Z.: Vertex operator algebras and the Verlinde conjecture. http://arxiv.org/list/math.QA/ 0406291, 2004

  27. Jones, V.F.R.: Index for subfactors. Invent. Math. 72, 1–25 (1983)

    Article  Google Scholar 

  28. Kac, M.: Can you hear the shape of a drum?. Amer. Math. Monthly 73, 1–23 (1966)

    Google Scholar 

  29. Kac, V.G., Longo, R., Xu, F.: Solitons in affine and permutation orbifolds. Commun. Math. Phys. 253, 723–764 (2004)

    Google Scholar 

  30. Kawahigashi, Y., Longo, R.: Classification of local conformal nets. Case c<1. Ann. of Math. 160, 493–522 (2004)

  31. Kawahigashi, Y., Longo, R.: Classification of two-dimensional local conformal nets with c<1 and 2-cohomology vanishing for tensor categories. Commun. Math. Phys. 244, 63–97 (2004)

    Google Scholar 

  32. Kawahigashi, Y., Longo, R., Müger, M.: Multi-interval subfactors and modularity of representations in conformal field theory. Commun. Math. Phys. 219, 631–669 (2001)

    Google Scholar 

  33. Kosaki, H.: Extension of Jones theory on index to arbitrary factors. J. Funct. Anal. 66, 123–140 (1986)

    Google Scholar 

  34. Longo, R.: Index of subfactors and statistics of quantum fields. I. Commun. Math. Phys. 126, 217–247 (1989)

    Google Scholar 

  35. Longo, R.: Index of subfactors and statistics of quantum fields. II. Commun. Math. Phys. 130, 285–309 (1990)

    Google Scholar 

  36. Longo, R.: An analogue of the Kac-Wakimoto formula and black hole conditional entropy. Commun. Math. Phys. 186, 451–479 (1997)

    Google Scholar 

  37. Longo, R.: The Bisognano-Wichmann theorem for charged states and the conformal boundary of a black hole. Electronic J. Diff. Eq., Conf. 04, 159–164 (2000)

    Google Scholar 

  38. Longo, R.: Notes for a quantum index theorem. Commun. Math. Phys. 222, 45–96 (2001)

    Google Scholar 

  39. Longo, R., Xu, F.: Topological sectors and a dichotomy in conformal field theory. Commun. Math. Phys. 251, 321–364 (2004)

    MathSciNet  Google Scholar 

  40. Maldacena, J.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998)

    Google Scholar 

  41. Moretti, V., Pinamonti, N.: Virasoro algebra with central charge c=1 on the horizon of a two-dimensional-Rindler space-time. J. Math. Phys. 45, 257–284 (2004)

    MathSciNet  Google Scholar 

  42. Pimsner, M., Popa, S.: Entropy and index for subfactors. Ann. Sci. Ec. Norm. Sup. 19, 57–106 (1986)

    Google Scholar 

  43. Rehren, K.-H.: Braid group statistics and their superselection rules. In: D. Kastler (ed.), The Algebraic Theory of Superselection Sectors, Singapore, World Scientific, 1990

  44. Rehren, K.-H.: Algebraic holography. Ann. H. Poincaré 1, 607–623 (2000)

    Google Scholar 

  45. Rehren, K.-H.: Chiral observables and modular invariants. Commun. Math. Phys. 208, 689–712 (2000)

    Google Scholar 

  46. Roe, J.: Elliptic Operators, Topology and Asymptotic Methods. Pitman Res. Notes in Math. Series 395, Harlow, UK: Addison Wesley-Longman, 1998

  47. Schroer, B.: Lightfront holography and the area density of entropy associated with localization on wedge regions. IJMPA 18, 1671 (2003)

    Google Scholar 

  48. Schroer, B., Wiesbrock, H.-W.: Modular theory and geometry. Rev. Math. Phys. 12, 139 (2000); see also: Ebrahimi-Fard, K.: Comments on: Modular theory and geometry. J. Phys. A. Math. Gen. 35(30), 6319–6328 (2000)

    Google Scholar 

  49. Strominger, A., Vafa, C.: Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B379, 99 (1996); Brown, J.D., Henneaux, M.: Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity. Commun. Math. Phys. 104, 207 (1986)

    Google Scholar 

  50. Summers, S.J., Verch, R.: Modular inclusion, the Hawking temperature, and quantum field theory in curved spacetime. Lett. Math. Phys. 37, 145 (1996)

    Google Scholar 

  51. Susskind, L.: The world as a hologram. J. Math. Phys. 36, 6377 (1995)

    Google Scholar 

  52. Takesaki, M.: Theory of Operator Algebras. Vol. I, II, III, Springer Encyclopaedia of Mathematical Sciences 124 (2002), 125, 127 (2003)

    Google Scholar 

  53. Wakimoto, M.: Infinite Dimensional Lie Algebras. Translations of Mathematical Monographs, Vol. 195, Providence RI: Amer. Math. Soc., 2001

  54. Wald, R.M.: General Relativity. Chicago, IL: University of Chicago Press, 1984

  55. Xu, F.: On a conjecture of Kac-Wakimoto. Publ. RIMS, Kyoto Univ. 37, 165–190 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuyuki Kawahigashi.

Additional information

Communicated by A. Connes

Supported in part by GNAMPA and MIUR.

Supported in part by JSPS.

Dedicated to Richard V. Kadison on the occasion of his eightieth birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawahigashi, Y., Longo, R. Noncommutative Spectral Invariants and Black Hole Entropy. Commun. Math. Phys. 257, 193–225 (2005). https://doi.org/10.1007/s00220-005-1322-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1322-9

Keywords

Navigation