Skip to main content
Log in

Existence of a Stable Polarized Vacuum in the Bogoliubov-Dirac-Fock Approximation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

According to Dirac’s ideas, the vacuum consists of infinitely many virtual electrons which completely fill up the negative part of the spectrum of the free Dirac operator D0. In the presence of an external field, these virtual particles react and the vacuum becomes polarized. In this paper, following Chaix and Iracane (J. Phys. B 22, 3791–3814 (1989)), we consider the Bogoliubov-Dirac-Fock model, which is derived from no-photon QED. The corresponding BDF-energy takes the polarization of the vacuum into account and is bounded from below. A BDF-stable vacuum is defined to be a minimizer of this energy. If it exists, such a minimizer is the solution of a self-consistent equation. We show the existence of a unique minimizer of the BDF-energy in the presence of an external electrostatic field, by means of a fixed-point approach. This minimizer is interpreted as the polarized vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aste, A., Baur, G., Hencken, K., Trautmann, D., Scharf, G.: Electron-positron pair production in the external electromagnetic field of colliding relativistic heavy ions. Eur. Phys. J. C 23(3), 545–550 (2002)

    Google Scholar 

  2. Avron, J., Seiler, R., Simon, B.: The index of a pair of projections. J. Funct. Anal. 120, 220–237 (1994)

    Article  Google Scholar 

  3. Bach, V.: Error bound for the Hartree-Fock energy of atoms and molecules. Commun. Math. Phys. 147, 527–548 (1992)

    Google Scholar 

  4. Bach, V., Barbaroux, J.-M., Helffer, B., Siedentop, H.: On the stability of the relativistic electron-positron field. Commun. Math. Phys. 201, 445–460 (1999)

    Article  Google Scholar 

  5. Bach, V., Lieb, E.H., Solovej, J.P.: Generalized Hartree-Fock theory and the Hubbard model. J. Statist. Phys. 76(1–2), 3–89 (1994)

    Google Scholar 

  6. Barbaroux, J.M., Esteban, M.J., Séré, E.: Some connections between Dirac-Fock and Electron-Positron Hartree-Fock. Ann. Henri Poincaré 6(1), 85–102 (2005)

    Article  Google Scholar 

  7. Barbaroux, J.-M., Farkas, W., Helffer, B., Siedentop, H.: On the Hartree-Fock equations of the electron/positron field. Commun. Math. Phys. 255, 131–159 (2005)

    Article  MathSciNet  Google Scholar 

  8. Cancès, E.: SCF algorithms for HF electronic calculations. Defranceschi, M. et al. (ed.), Mathematical models and methods for ab initio quantum chemistry. Lect. Notes Chem. 74, Berlin: Springer, 2000, pp. 17–43

  9. Chaix, P., Iracane, D.: From quantum electrodynamics to mean field theory: I. The Bogoliubov-Dirac-Fock formalism. J. Phys. B 22(23), 3791–3814 (1989)

    Google Scholar 

  10. Chaix, P., Iracane, D., Lions, P.L.: From quantum electrodynamics to mean field theory: II. Variational stability of the vacuum of quantum electrodynamics in the mean-field approximation. J. Phys. B 22(23), 3815–3828 (1989)

    Google Scholar 

  11. Chaix, P.: Une Méthode de Champ Moyen Relativiste et Application à l’Etude du Vide de l’Electrodynamique Quantique. PhD Thesis, University Paris VI, 1990

  12. Desclaux, J.P.: Relativistic Dirac-Fock expectation values for atoms with Z=1 to Z=120. Atomic Data and Nuclear Data Tables 12, 311–406 (1973)

    Article  CAS  Google Scholar 

  13. Dirac, P.A.M.: Théorie du positron. Solvay report, Paris: Gauthier-Villars, XXV, 353 S., 1934, pp. 203–212

  14. Dirac, P.A.M.: Discussion of the infinite distribution of electrons in the theory of the positron. Proc. Camb. Philos. Soc. 30, 150–163 (1934)

    CAS  Google Scholar 

  15. Esteban, M.J., Séré, E.: Solutions of the Dirac-Fock Equations for atoms and molecules. Commun. Math. Phys. 203, 499–530 (1999)

    Article  Google Scholar 

  16. Esteban, M.J., Séré, E.: Nonrelativistic limit of the Dirac-Fock equations. Ann. Henri Poincaré 2(5), 941–961 (2001)

    Article  Google Scholar 

  17. Esteban, M.J., Séré, E.: A max-min principle for the ground state of the Dirac-Fock functional. Contemp. Math. 307, 135–139 (2002)

    Google Scholar 

  18. Foldy, L.L., Eriksen, E.: Some physical consequences of vacuum polarization. Phys. Rev. 95(4), 1048–1051 (1954)

    Article  Google Scholar 

  19. French, J.D., Weisskopf, V.F.: The electromagnetic shift of energy levels. Phys. Rev., II. Ser. 75, 1240–1248 (1949)

    Google Scholar 

  20. Fierz, H., Scharf, G.: Particle interpretation for external field problems in QED. Helv. Phys. Acta 52, 437–453 (1979)

    Google Scholar 

  21. Furry, W.H.: On bound states and scattering in positron theory. Phys. Rev. 81(1), 115–124 (1951)

    Article  Google Scholar 

  22. Furry, W.H.: A symmetry theorem in the positron theory. Phys. Rev. 51, 125–129 (1937)

    Article  CAS  Google Scholar 

  23. Furry, W.H., Oppenheimer, J.R.: On the theory of the electron and positive. Phys. Rev., II. Ser. 45, 245–262 (1934)

    Google Scholar 

  24. Glauber, R., Rarita, W., Schwed, P.: Vacuum polarization effects on energy levels in μ-mesonic atoms. Phys. Rev. 120(2), 609–613 (1960)

    Article  Google Scholar 

  25. Gorceix, O. Indelicato, P., Desclaux, J.P.: Multiconfiguration Dirac-Fock studies of two-electron ions: I. Electron-electron interaction. J. Phys. B: At. Mol. Phys. 20, 639–649 (1987)

    CAS  Google Scholar 

  26. Grant, I.P.: Relativistic calculation of atomic structures. Adv. Phys. 19, 747–811 (1970)

    CAS  Google Scholar 

  27. Hainzl, C.: On the vacuum polarization density caused by an external field. Ann. Henri Poincaré 5, 1137–1157 (2004)

    Article  MathSciNet  Google Scholar 

  28. Hainzl, C., Lewin, M., Séré, E.: Self-consistent solution for the polarized vacuum in a no-photon QED model. To appear in J. Phys. A: Math. and Gen.

  29. Hainzl, C., Siedentop, H.: Non-perturbative mass and charge renormalization in relativistic no-photon quantum electrodynamics. Commun. Math. Phys. 243, 241–260 (2003)

    Article  Google Scholar 

  30. Helffer, B., Siedentop, H.: Form perturbation of the second quantized Dirac field. Mathematical Physics Electronic Journal 4, paper 4, 1998

    Google Scholar 

  31. Heisenberg, W.: Bemerkungen zur Diracschen Theorie des Positrons. Z. Phys. 90, 209–231 (1934)

    Article  CAS  Google Scholar 

  32. Hundertmark, D., Röhrl, N., Siedentop, H.: The sharp bound on the stability of the relativistic electron-positron field in Hartree-Fock approximation. Commun. Math. Phys. 211(3), 629–642 (2000)

    Article  Google Scholar 

  33. Itzykson, C., Zuber, J.-B.: Quantum Field Theory. New York: McGraw-Hill, 1980

  34. Kim, Y.K.: Relativistic self-consistent Field theory for closed-shell atoms. Phys. Rev. 154, 17–39 (1967)

    Article  CAS  Google Scholar 

  35. Klaus, M.: Non-regularity of the Coulomb potential in quantum electrodynamics. Helv. Phys. Acta 53, 36–39 (1980)

    Google Scholar 

  36. Klaus, M., Scharf, G.: The regular external field problem in quantum electrodynamics. Helv. Phys. Acta 50, 779–802 (1977)

    CAS  Google Scholar 

  37. Klaus, M., Scharf, G.: Vacuum polarization in fock space. Helv. Phys. Acta 50, 803–814 (1977)

    CAS  Google Scholar 

  38. Lieb, E.H.: Variational principle for many-fermion systems. Phys. Rev. Lett. 46, 457–459 (1981)

    Article  CAS  Google Scholar 

  39. Lieb, E.H., Siedentop, H.: Renormalization of the regularized relativistic electron-positron field. Commun. Math. Phys. 213(3), 673–683 (2000)

    Article  Google Scholar 

  40. Lieb, E.H., Simon, B.: The Hartree-Fock theory for Coulomb systems. Commun. Math. Phys. 53, 185–194 (1977)

    Article  Google Scholar 

  41. Lindgren, I., Rosen, A.: Relativistic self-consistent field calculations. Case Stud. At. Phys. 4, 93–149 (1974)

    CAS  Google Scholar 

  42. Mittleman, M.H.: Theory of Relativistic effects on atoms: Configuration-space Hamiltonian. Phys. Rev. A 24(3), 1167–1175 (1981)

    Article  Google Scholar 

  43. Mohr, P.J., Plunien, G., Soff, G.: QED corrections in heavy atoms. Phys. Rep. 293, 227–369 (1998)

    Article  CAS  Google Scholar 

  44. Paturel, E.: Solutions of the Dirac-Fock equations without projector. Ann. Henri Poincaré 1(6), 1123–1157 (2000)

    Google Scholar 

  45. Pauli, W., Rose, M.E.: Remarks on the polarization effects in the positron theory. Phys. Rev II 49, 462–465 (1936)

    Article  CAS  Google Scholar 

  46. Reinhardt, J., Müller, B., Greiner, W.: Theory of positron production in heavy-ion collision. Phys. Rev. A 24(1), 103–128 (1981)

    Article  Google Scholar 

  47. Ruijsenaars, S.N.M.: On Bogoliubov transformations for systems of relativistic charged particles. J. Math. Phys. 18(3), 517–526 (1977)

    Article  Google Scholar 

  48. Simon, B.: Trace Ideals and their Applications. Vol. 35 of London Mathematical Society Lecture Notes Series. Cambridge: Cambridge University Press, 1979

  49. Scharf, G., Seipp, H.P.: Charged vacuum, spontaneous positron production and all that. Phys. Lett. 108B(3), 196–198 (1982)

    Google Scholar 

  50. Seipp, H.P.: On the S-operator for the external field problem of QED. Helv. Phys. Acta 55, 1–28 (1982)

    CAS  Google Scholar 

  51. Serber, R.: Linear modifications in the Maxwell field equations. Phys. Rev., II. Ser. 48, 49–54 (1935)

    Google Scholar 

  52. Shale, D., Stinespring, W.F.: Spinor representations of infinite orthogonal groups. J. Math. Mech. 14, 315–322 (1965)

    Google Scholar 

  53. Swirles, B.: The relativistic self-consistent field. Proc. Roy. Soc. A 152, 625–649 (1935)

    Google Scholar 

  54. Thaller, B.: The Dirac Equation. Berlin-Heidelberg-New York: Springer Verlag, 1992

  55. Uehling, E.A.: Polarization effects in the positron theory. Phys. Rev., II. Ser. 48, 55–63 (1935)

    Google Scholar 

  56. Weisskopf, V.: Über die Elektrodynamik des Vakuums auf Grund der Quantentheorie des Elektrons. Math.-Fys. Medd., Danske Vid. Selsk. 16(6), 1–39 (1936)

    Google Scholar 

  57. Wolkowisky, J.H.: Existence of solutions of the Hartree equations for N electrons. An application of the Schauder-Tychonoff theorem. Indiana Univ. Math. J. 22, 551–568 (1972–73)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hainzl.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hainzl, C., Lewin, M. & Séré, É. Existence of a Stable Polarized Vacuum in the Bogoliubov-Dirac-Fock Approximation. Commun. Math. Phys. 257, 515–562 (2005). https://doi.org/10.1007/s00220-005-1343-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1343-4

Keywords

Navigation