Skip to main content
Log in

On the Well-Posedness Problem and the Scattering Problem for the Dullin-Gottwald-Holm Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the well-posedness of the Cauchy problem and the scattering problem for a new nonlinear dispersive shallow water wave equation (the so-called DGH equation) which was derived by Dullin, Gottwald and Holm. The issue of passing to the limit as the dispersive parameter tends to zero for the solution of the DGH equation is investigated, and the convergence of solutions to the DGH equation as α2→0 is studied, and the scattering data of the scattering problem for the equation can be explicitly expressed; the new exact peaked solitary wave solutions are obtained in the DGH equation. After giving the condition of existing peakon in the DGH equation, it turns out to be nonlinearly stable for the peakon in the DGH equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661–1664 (1993)

    Article  Google Scholar 

  2. Fuchssteiner, B., Fokas, A. S.: Symplectic structures, their Backlund transformation and hereditary symmetries. Physica D 4, 47–66 (1981)

    Google Scholar 

  3. Johnson, R. S.: Camassa-Holm, Korteweg-de Vries and related models for water waves. J. Fluid. Mech. 457, 63–82 (2002)

    Article  Google Scholar 

  4. Dullin, R., Gottwald, G., Holm, D.: An integrable shallow water equation with linear and nonlinear dispersion. Phys.Rev. Lett. 87(9), 4501–4504 (2001)

    Google Scholar 

  5. Camassa, R., Holm, D., Hyman, J.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    Google Scholar 

  6. Fisher, M., Schiff, J.: The Camassa Holm equations: conserved quantities and the initial value problem. Phy. Lett. A. 259(3), 371–376 (1999)

    Article  Google Scholar 

  7. Clarkson, P.A., Mansfield, E.L., Priestley, T.J.: Symmetries of a class of nonlinear third-order partial differential equations. Math. Comput. Modelling 25(8–9), 195–212 (1997)

    Google Scholar 

  8. Kraenkel, R.A., Senthilvelan, M., Zenchuk, A.I.: On the integrable perturbations of the Camassa-Holm equation. J. Math. Phys. 41(5), 3160–3169 (2000)

    Article  Google Scholar 

  9. Cooper, F., Shepard, H.: Solitons in the Camassa–Holm shallow water equation. Phys. Lett. A 194(4), 246–250 (1994)

    Google Scholar 

  10. Tian, L., Xu, G., Liu, Z.: The concave or convex peaked and smooth soliton solutions of Camassa-Holm equation. Appl. Math. Mech. 123(5), 557–567 (2002)

    Google Scholar 

  11. Tian, L., Song, X.: New peaked solitary wave solutions of the generalized Camassa- Holm equation. Chaos, Solitons and Fractals 19(3), 621–637 (2004)

    Google Scholar 

  12. Tian, L., Yin, J.: New compacton solutions and solitary solutions of fully nonlinear generalized Camassa-Holm equations. Chaos, Soliton and Fractals 20(4), 289–299 (2004)

    Google Scholar 

  13. Constantin, A., Escher J.: Global existence and blow-up for a shallow water equation. Ann. Sc. Norm. Sup. Pisa 26, 303–328 (1998)

    Google Scholar 

  14. Constantin, A.: Global existence of solutions and breaking waves for a shallow water equation: a geometric approach. Ann.Inst.Fourier (Grenoble) 50, 321–362 (2000)

    Google Scholar 

  15. Constantin, A.: The Hamitonian structure of the Camassa-Holm equation. Exposition. Math. 15, 53–85 (1997)

    Google Scholar 

  16. Constantin, A., McKean, H. P.: A shallow water equation on the circle. Comm. Pure Appl. Math. 52(8), 949–982 (1999)

    Article  Google Scholar 

  17. Constantin, A., Strauss, W.A.: Stability of the Camassa-Holm solitons. J. Nonlinear Sci. 12, 415–422 (2002)

    Article  Google Scholar 

  18. Constantin, A.: On the scattering problem for the Camassa-Holm equation. Proc. R.Soc . London A 457, 953–970 (2001)

    Google Scholar 

  19. Lenells, J.: The Scattering approach for the Camassa-Holm equation. J. Nonliear Math.Phys. 9(4), 389–393 (2002)

    Google Scholar 

  20. Beals, R., Sattinger, D., Szmigielski, J.: Acoustic scattering and the extended Korteweg-de Vries hierarchy. Adv. Math. 140, 190–206 (1998)

    Article  Google Scholar 

  21. Constantin, A., Escher, J.: Wave Breaking for Nonlinear Nonlocal Shallow Water Equations. Acta Math. 181, 229–243 (1998)

    Google Scholar 

  22. Danchin, R.: A Few Remarks on the Camassa–Holm Equation. Differential and Integral Equations 14, 953–988 (2001)

    Google Scholar 

  23. Guo, BL., Liu, ZR.: Peaked wave solutions of CH - γ equation. Sci China (Ser. A) 33(4), 325–337 (2003)

    Google Scholar 

  24. Tang, M., Yang, C.: Extension on peaked wave solutions of CH - γ equation. Chaos, Solitons and Fractals 20, 815–825 (2004)

    Google Scholar 

  25. Bona, J., Smith, R.: The initial-value problem for the Korteweg-de Vries equation. Philos. Trans.Royal Soc. London Series A 278, 555–601 (1975)

    Google Scholar 

  26. Kato, T.: On the Cauchy problem for the (generalized) KdV equation. Studies in Applied Mathematics, Advances in Mathematics Supplementary. Vol.8, NewYork-London: Academic Press, 1983, pp. 93–128

  27. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. J.Funct.Anal. 74, 160–197 (1987)

    Article  Google Scholar 

  28. Gelfand, I.M., Dorfman, I.Ya.R.: Hamiltonian operators and algebraic structures related to them. Funct. Anal. Appl. 13, 248–262 (1979)

    Article  Google Scholar 

  29. Li, Y., Olver, P.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Diff. Eq. 162, 27–63 (2000)

    Article  Google Scholar 

  30. Rodriguez-Blanco, G.: On the Cauchy problem for the Camassa–Holm equation. Nonlinear Anal. 46, 309–327 ( 2001)

    Article  Google Scholar 

  31. Constantin, A., Escher, J.: Global weak solutions for a shallow water equation. Indiana Univ. Math. J 47(4), 1527–1545 (1998)

    Google Scholar 

  32. Dunford, N., Schwartz, J.T.: Linear operators. Vol.2, New York: Wiley, 1988

  33. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41, 891–907 (1988)

    Google Scholar 

  34. Ablowitz, M., Clarkson, P.: Soliton, nonlinear evolution equations and inverse scattering. Cambridge: Cambridge University Press, 1993

  35. Deift, P., Trubowits, E.: Inverse scattering on the line. Comm Pure Appl. Math. 32, 121–251 (1979)

    Google Scholar 

  36. Li, Y.A., Olver, P.J.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Diff. Eq. 162, 27–63 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Kupiainen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, L., Gui, G. & Liu, Y. On the Well-Posedness Problem and the Scattering Problem for the Dullin-Gottwald-Holm Equation. Commun. Math. Phys. 257, 667–701 (2005). https://doi.org/10.1007/s00220-005-1356-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1356-z

Keywords

Navigation