Skip to main content
Log in

Bundle Gerbes for Chern-Simons and Wess-Zumino-Witten Theories

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop the theory of Chern-Simons bundle 2-gerbes and multiplicative bundle gerbes associated to any principal G-bundle with connection and a class in H4(BG, ℤ) for a compact semi-simple Lie group G. The Chern-Simons bundle 2-gerbe realises differential geometrically the Cheeger-Simons invariant. We apply these notions to refine the Dijkgraaf-Witten correspondence between three dimensional Chern-Simons functionals and Wess-Zumino-Witten models associated to the group G. We do this by introducing a lifting to the level of bundle gerbes of the natural map from H4(BG, ℤ) to H3(G, ℤ). The notion of a multiplicative bundle gerbe accounts geometrically for the subtleties in this correspondence for non-simply connected Lie groups. The implications for Wess-Zumino-Witten models are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aschieri, P., Jurco, B.: Gerbes. M5-brane anomalies and E8 Gauge theory. JHEP 0410, 068 (2004)

  2. Atiyah, M., Bott, R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. London Ser. A 308(1505), 523–615 (1983)

    Google Scholar 

  3. Bismut, J-M., Freed, D.: The analysis of elliptic families. I. Metrics and connections on determinant bundles. Commun. Math. Phys. 106(1), 159–176 (1986). The analysis of elliptic families. II. Dirac operators, eta invariants, and the holonomy theorem. Commun. Math. Phys. 107(1), 103–163 (1986)

    Google Scholar 

  4. Bouwknegt, P., Carey, A., Mathai, V., Murray, M., Stevenson, D.: Twisted K-theory and K-theory of bundle gerbes. Commun. Math. Phys. 228(1), 17–45 (2002)

    Article  Google Scholar 

  5. Breen, L.: On the classification of 2-gerbes and 2-stacks. Asterisque No. 225, 1994

  6. Brylinski, J-L.: Loop spaces, Characteristic Classes and Geometric Quantization. Boston, MA: Birkhuser Boston, Inc., 1993

  7. Brylinski, J-L.: Differentiable Cohomology of Gauge Groups. http://arxiv.org/list/math.DG/ 0011069, 2000

  8. Brylinski, J-L.: Geometric construction of Quillen line bundles. In: Advances in Geometry, Progr. Math. 172, Basel-Boston: Birkhäuser, 1999, pp. 107–146

  9. Brylinski, J-L., McLaughlin, D. A.: The converse of the Segal-Witten reciprocity law. Internat. Math. Res. Notices, 8, 371–380 (1996)

    Google Scholar 

  10. Brylinski, J-L., McLaughlin, D. A.: The geometry of degree-four characteristic classes and of line bundles on loop spaces. I. Duke Math. J. 75(3), 603–638 (1994). The geometry of degree-(4) characteristic classes and of line bundles on loop spaces. II. Duke Math. J. 83(1), 105–139 (1996)

    Article  Google Scholar 

  11. Carey, A. L., Mickelsson, J.: The universal gerbe, Dixmier-Douady class, and gauge theory. Lett. Math. Phys. 59(1), 47–60 (2002)

    Article  Google Scholar 

  12. Carey, A.L., Mickelsson, J., Murray, M.K.: Bundle Gerbes Applied to Quantum Field Theory. Rev.Math.Phys. 12, 65–90 (2000)

    Article  Google Scholar 

  13. Carey, A.L., Murray, M.K., Johnson, S.: Holonomy on D-Branes. http://arxiv.org/list/ hep-th/0204199, 2002

  14. Carey, A., Murray, M.K., Wang, B.L.: Higher bundle gerbes and cohomology classes in gauge theory. J. Geom. Phys. 21, 183–197 (1997)

    Article  Google Scholar 

  15. Carey, A.L., Wang, B.L.: The Universal Gerbe and Local Family Index Theory. http://arxiv.org/list/ math.DG/0407243, 2004

  16. Cheeger, J., Simons, J.: Characteristic forms and geometric invariants. In: Geometry and topology. Lecture Notes in Mathematics 1167, Berlin-Heidelberg-New York: Springer, 1985

  17. Chern, S. S., Simons, J.: Characteristic forms and geometric invariants. Ann. of Math. 99, 48–69 (1974)

    Google Scholar 

  18. Diaconescu, E., Moore, G., Freed, D.: The M-theory 3-form and E 8 gauge theory. http://arxiv.org/list/hep-th/0312069, 2003

  19. Dupont, J. L.: Curvature and characteristic classes. Lecture Notes in Mathematics, Vol. 640. Lecture Notes in Math., Berlin: Springer, 1978

  20. Dupont, J., Johansen, F. L.: Remarks on determinant line bundles, Chern-Simons forms and invariants. Math. Scand. 91(1), 5–26 (2002)

    Google Scholar 

  21. Dupont, J., Kamber, F.: Gerbes, simplicial forms and invariants for families of foliated bundles. Commun. Math. Phys. 253, 253–282 (2004)

    Article  Google Scholar 

  22. Dupont, J. L., Ljungmann, R.: Integration of simplicial forms and Deligne cohomology. http:// arxiv.org/list/math.DG/0402059, 2004

  23. Dijkgraaf, R., Witten, E.: Topological Gauge Theories and Group Cohomology. Commun. Math. Phys. 129, 393–429 (1990)

    Google Scholar 

  24. Freed, D.: Classical Chern-Simons theory, Part 1. Adv. Math. 113, 237–303 (1995); Classical Chern-Simons theory, Part 2. Special issue for S. S. Chern. Houston J. Math. 28(2), 293–310 (2002)

    Article  Google Scholar 

  25. Freed, D.: Higher algebraic structures and quantization. Commun. Math. Phys. 159(2), 343–398 (1994)

    Google Scholar 

  26. Gajer, P.: Geometry of Deligne cohomology. Invent. Math. 127, 155–207 (1997)

    Article  Google Scholar 

  27. Gawedzki, K.: Topological actions in two-dimensional quantum field theory . In: Nonperturbative Quantum Field Theories, ‘t Hooft, G., Jaffe, A., Mack, G., Mitter, P. K., Stora, R. (eds.) NATO Series Vol. 185, London-New York: Plenum Press 1988, pp. 101–142

  28. Gawedzki, K., Reis, N.: WZW branes and gerbes. Rev. Math. Phys. 14(12), 1281–1334 (2002)

    Article  Google Scholar 

  29. Giraud, J.: Cohomologie non ablienne. Berlin-New York: Springer-Verlag, 1971

  30. Gomi, K.: Connections and curvings on lifting bundle gerbes. J. London Math. Soc. (2) 67(2), 510–526 (2003)

    Google Scholar 

  31. Gomi, K.: The formulation of the Chern-Simons action for general compact Lie groups using Deligne cohomology. J. Math. Sci. Univ. Tokyo 8(2), 223–242 (2001)

    Google Scholar 

  32. Gomi, K.: Gerbes in classical Chern-Simons theory. http://arxiv.org/list/hep-th/0105072, 2001

  33. Hopkins, M.J., Singer, I.M.: Quadratic functions in geometry, topology,and M-theory. http:// arxiv.org/list/math.AT/0211216, 2002

  34. Johnson, S. : Constructions with Bundle Gerbes. Thesis, University of Adelaide. http://arxiv.org/ list/math.DG/0312175, 2003

  35. Kelly, G. M., Street, R.: Review of the elements of 2-categories. In: Category Seminar (Proc. Sem., Sydney 1972/73), Lecture Notes in Mathematics, Vol. 420, Berlin: Springer, 1974, pp. 75–103

  36. Moore, G., Seiberg, N.: Taming the conformal Zoo. Phys. Lett. B 220(3), 422–430 (1989)

    Article  Google Scholar 

  37. Murray, M. K.: Bundle gerbes. J. London Math. Soc. (2) 54(2), 403–416 (1996)

  38. Murray, M. K., Stevenson, D.: Bundle gerbes: Stable isomorphsim and local theory. J. London Math. Soc. (2). 62(3), 925–937 (2002)

    Google Scholar 

  39. Murray, M. K., Stevenson, D.: Higgs fields, bundle gerbes and string structures. Commun. Math. Phys. 243(3), 541–555 (2003)

    Article  Google Scholar 

  40. Narasinhan, H.S., Ramananan, S.: Existence of universal connections. Am. J. Math. 83, 563–572 (1961); 85, 223–231 (1963)

    Google Scholar 

  41. Pressley, A., Segal, G.: Loop groups. Oxford: Oxford University Press, 1988

  42. Quillen, D.: Determinants of Cauchy-Riemann operators on Riemann surfaces. Funct. Anal. Appl. 19(1), 31–34 (1985)

    Article  Google Scholar 

  43. Ramadas, T. R., Singer, I. M., Weitsman, J.: Some comments on Chern-Simons gauge theory. Commun. Math. Phys. 126(2), 409–420 (1989)

    Google Scholar 

  44. Stevenson, D.: Bundle 2-gerbes. Proc. Lond. Math. Soc. (3) 88, 405–435 (2004)

    Google Scholar 

  45. Toledano-Laredo, V.: Positive energy representations of the loop groups of non-simply connected Lie groups. Commun. Math. Phys. 207(2), 307–339 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan L. Carey.

Additional information

Communicated by A. Connes

The authors acknowledge the support of the Australian Research Council. ALC thanks MPI für Mathematik in Bonn and ESI in Vienna and BLW thanks CMA of Australian National University for their hospitality during part of the writing of this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carey, A., Johnson, S., Murray, M. et al. Bundle Gerbes for Chern-Simons and Wess-Zumino-Witten Theories. Commun. Math. Phys. 259, 577–613 (2005). https://doi.org/10.1007/s00220-005-1376-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1376-8

Keywords

Navigation