Skip to main content
Log in

The Lorenz Attractor is Mixing

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study a class of geometric Lorenz flows, introduced independently by Afraimovič, Bykov & Sil′nikov and by Guckenheimer & Williams, and give a verifiable condition for such flows to be mixing. As a consequence, we show that the classical Lorenz attractor is mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afraimovič, V.S., Bykov, V.V., Sil′nikov, L.P.: The origin and structure of the Lorenz attractor. Dokl. Akad. Nauk SSSR 234, 336–339 (1977)

    Google Scholar 

  2. Allan, D.W.: On the behaviour of systems of coupled dynamos. Proc. Cambridge Philos. Soc. 58, 671–693 (1962)

    Google Scholar 

  3. Alves, J.F., Luzzatto, S., Pinheiro, V.: Lyapunov exponents and rates of mixing for one-dimensional maps. Ergodic Th. & Dyn. Syst. 24, 637–657 (2004)

    Google Scholar 

  4. Anosov, D.V.: Geodesic flows on closed Riemann manifolds with negative curvature. Proceedings of the Steklov Institute of Mathematics, No. 90 (1967). Translated from the Russian by S. Feder Providence, R.I.: American Mathematical Society, 1969

  5. Bowen, R.: Mixing Anosov flows. Topology 15, 77–79 (1976)

    Article  Google Scholar 

  6. Bruin, H., Holland, M., Nicol, M.: Livsic regularity for Markov systems. Ergodic Theory Dynam. Systems (2005) to appear

  7. Bruin, H., Luzzatto, S., van Strien S.: Decay of correlations in one-dimensional dynamics. Ann. Sci. Éc. Norm. Sup. 36, 621–646 (2003)

    Google Scholar 

  8. Bullard, E.C.: The stability of a homopolar dynamo. Cambridge Phil. Soc 51, 744–760 (1955)

    Google Scholar 

  9. Diaz-Ordaz, K.: Decay of correlations for non-Hölder observables for expanding Lorenz-like one-dimensional maps. (2005) is: To appear in Disc. And Cont. Dyn. Syst.

  10. Diaz-Ordaz, K., Holland, M., Luzzatto, S.: Statistical properties of one-dimensional maps with critical points and singularities. (2005) Preprint

  11. Field, M., Melbourne, I., Török, A.: Stability of mixing and rapid mixing for hyperbolic flows. http://www.maths.surrey.ac.uk/personal/st/I.Melbourne/papers/rapid.pdf

  12. Glendinning, P., Sparrow, C.: Prime and renormalisable kneading invariants and the dynamics of expanding Lorenz maps. Phys. D. 62, 22–50 (1993)Homoclinic chaos (Brussels, 1991).

    Google Scholar 

  13. Gouëzel, S.: Regularity of coboundaries for non uniformly expanding Markov maps. http://org/list/math.DS/0502458, 2005 is: To appear in Proc AMS.

  14. Guckenheimer, J., Williams, R.F.: Structural stability of Lorenz attractors. Inst. Hautes Études Sci. Publ. Math. 50, 59–72 (1979)

    Google Scholar 

  15. Hide, R.: Geomagnetism, `vacillation', atmospheric predictability and deterministic chaos. In: `Paths of Discovery', scripta varia, Vartican city: Pontifical Acad. of Sci. Press, 2005

  16. Katok, A.(in collaboration with K. Burns): Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems. Ergodic Theory Dynam. Systems 14, 757–785 (1994)

    Google Scholar 

  17. Lorenz, E.D.: Deterministic nonperiodic flow. J. Atmosph. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  18. Morales, C.A., Pacifico, M.J., Pujals, E.R.: Singular hyperbolic systems. Proc. Amer. Math. Soc. 127, 3393–3401 (1999)

    Article  Google Scholar 

  19. Morales, C.A., Pacifico, M.J.: Mixing attractors for 3-flows. Nonlinearity 14, 359–378 (2001)

    Article  Google Scholar 

  20. Pesin, Ya.: Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties. Ergod. Th. & Dynam. Sys. 12, 123–151 (1992)

    Google Scholar 

  21. Plante, Joseph F.: Anosov flows. Amer. J. Math. 94, 729–754 (1972)

    Google Scholar 

  22. Ratner, M.: Bernoulli flow over maps of the interval. Israel J. Math. 31, 298–314 (1978)

    Google Scholar 

  23. Rikitake, T.: Oscillations of a system of disk dynamos. Proc. Cambridge Philos. Soc. 54, 89–105 (1958)

    Google Scholar 

  24. Rovella, A.: The dynamics of perturbations of the contracting Lorenz attractor. Bol. Soc. Brasil. Mat. (N.S.) 24, 233–259 (1993)

    Article  Google Scholar 

  25. Sataev, E.A.: Invariant measures for hyperbolic mappings with singularities. Usp. Mat. Nauk. 47, 147–202, 240 (1992) (Russian)

    Google Scholar 

  26. Sparrow, C.: The Lorenz equations: bifurcations, chaos and strange attractors. Applied Mathematical Sciences, Vol. 41, Berlin: Springer Verlag, 1982

  27. Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris Sér. I Math. 328, 1197–1202 (1999)

    Google Scholar 

  28. Tucker, W.: A rigorous ODE solver and Smale's 14th problem. Found. Comput. Math. 2, 53–117 (2002)

    Google Scholar 

  29. Viana, M.: Dynamical systems: moving into the next century. In: Mathematics unlimited–2001 and beyond, Berlin: Springer, 2001, pp. 1167–1178

  30. Williams, R.F.: The structure of Lorenz attractors. Inst. Hautes Études Sci. Publ. Math. 50, 321–342 (1979)

    Google Scholar 

  31. Young, L.-S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math. (2) 147, 585–650 (1998)

    Google Scholar 

  32. Young, L.-S., Recurrence times and rates of mixing. Israel J. Math. 110, 153–188 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Gallavotti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luzzatto, S., Melbourne, I. & Paccaut, F. The Lorenz Attractor is Mixing. Commun. Math. Phys. 260, 393–401 (2005). https://doi.org/10.1007/s00220-005-1411-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1411-9

Keywords

Navigation