Skip to main content
Log in

Uniqueness of Diffeomorphism Invariant States on Holonomy–Flux Algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Loop quantum gravity is an approach to quantum gravity that starts from the Hamiltonian formulation in terms of a connection and its canonical conjugate. Quantization proceeds in the spirit of Dirac: First one defines an algebra of basic kinematical observables and represents it through operators on a suitable Hilbert space. In a second step, one implements the constraints. The main result of the paper concerns the representation theory of the kinematical algebra: We show that there is only one cyclic representation invariant under spatial diffeomorphisms.

While this result is particularly important for loop quantum gravity, we are rather general: The precise definition of the abstract *-algebra of the basic kinematical observables we give could be used for any theory in which the configuration variable is a connection with a compact structure group. The variables are constructed from the holonomy map and from the fluxes of the momentum conjugate to the connection. The uniqueness result is relevant for any such theory invariant under spatial diffeomorphisms or being a part of a diffeomorphism invariant theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashtekar A., (1991) Lectures on non-perturbative canonical gravity. Notes prepared in collaboration with R. S. Tate. Singapore, World Scientific

    Google Scholar 

  2. Łojasiewicz S. (1964) Triangulation of semi-analytic sets. Ann. Scuola. Norm. Sup. Pisa 18, 449–474

    MathSciNet  Google Scholar 

  3. Bierstone E., Milman P.D. (1988) Semianalytic and Subanalytic sets. Publ. Maths. IHES 67, 5–42

    MATH  MathSciNet  Google Scholar 

  4. Rovelli C. (1998) Loop quantum gravity. Living Rev. Rel. 1: 1

    MathSciNet  Google Scholar 

  5. Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge: Cambridge University Press, in press; a prelimary version is available a http://aixiv.org/list/ gr-qc/0110034, 2001

  6. Ashtekar A., Lewandowski J. (2004) Background independent quantum gravity: A status report. Class. Quant. Grav. 21, R53

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Rovelli, C.: Quantum Gravity. Cambridge: Cambridge University Press, in press, 2004

  8. Rovelli C. (1991) Ashtekar formulation of general relativity and loop space non-perturbative quantum gravity: a report. Class. Quant. Grav. 8, 1613–1675

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Ashtekar A., Lewandowski J. (1997) Quantum theory of geometry I: Area operators. Class. Quant. Grav. 14, A55–A82

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Ashtekar A., Corichi A., Zapata J.A. (1998) Quantum theory of geometry III: Non-commutativity of Riemannian structures. Class. Quant. Grav. 15, 2955–2972

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Fairbairn W. Rovelli C. (2004) Separable Hilbert space in loop quantum gravity, J. Math. Phys. 45, 2802–2814

    Article  ADS  MathSciNet  Google Scholar 

  12. Schmüdgen, K.: Unbounded Operator Algebras and Representation Theory. In: Operator Theory: Advances and Applications. Vol. 37, Basel: Birkhäuser, 1990

  13. Sahlmann, H.: Some comments on the representation theory of the algebra underlying loop quantum gravity. http://arxiv.org/list/ gr-qc/0207111, 2002

  14. Sahlmann, H.: When do measures on the space of connections support the triad operators of loop quantum gravity? http://arxiv.org/list/ gr-qc/0207112, 2002

  15. Okołow A., Lewandowski J. (2003) Diffeomorphism covariant representations of the holonomy – flux *-algebra. Class. Quant. Grav. 20, 3543–3568

    Article  ADS  Google Scholar 

  16. Sahlmann, H., Thiemann, T.: On the superselection theory of the weyl algebra for diffeomorphism invariant quantum gauge theories. http://arxiv.org/list/ gr-qc/0302090, 2003

  17. Zapata J.A. (1998) Combinatorial space from loop quantum gravity. Gen. Rel. Grav. 30: 1229

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Velhinho J.M. (2004) On the structure of the space of generalized connections. Int. J. Geom. Meth. Mod. Phys. 1, 311–334

    Article  MATH  MathSciNet  Google Scholar 

  19. Ashtekar A., Lewandowski J. (1995) Differential Geometry on the Space of Connections via Graphs and Projective Limits. J. Geom. Phys. 17, 191–230

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Okołow A., Lewandowski J. (2004) Automorphism covariant representations of the holonomy-flux *-algebra. Class. Quant. Grav. 22, 657

    Article  ADS  Google Scholar 

  21. Ashtekar A., Isham C.J. (1992) Representation of the holonomy algebras of gravity and non-Abelian gauge theories. Class. Quant. Grav. 9, 1433–1467

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Ashtekar A., Lewandowski J., (1994) Representation theory of analytic holonomy algebras. In: Baez J.C. (eds) Knots and Quantum Gravity. Oxford, Oxford University Press

    Google Scholar 

  23. Baez J.C. (1994) Generalized measures in gauge theory. Lett. Math. Phys. 31, 213–223

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Marolf D., Mourão J. (1995) On the support of the Ashtekar–Lewandowski measure, Commun. Math. Phys. 170, 583–606

    Article  MATH  ADS  Google Scholar 

  25. Ashtekar A., Lewandowski J. (1995) Projective techniques and functional integration. J. Math. Phys. 36, 2170–2191

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Ashtekar A., Lewandowski J., Marolf D., Mourão J., Thiemann T. (1995) Quantization of diffeomorphism invariant theories of connections with local degrees of freedom. J. Math. Phys. 36, 6456–6493

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Lewandowski J., Marolf D. (1998) Loop constraints: A habitat and their algebra. Int. J. Mod. Phys. D7, 299–330

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Fleischhack, C., Personal communication

  29. Fleischhack, C.: Representations of the Weyl algebra in quantum geometry. http://arxiv.org/list/ math-ph/0407006, 2004

  30. Reed M., Simon B. (1980) Methods of Modern Mathematical Physics Vol.1: Functional Analysis. New York, Academic Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Thiemann.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewandowski, J., Okołów, A., Sahlmann, H. et al. Uniqueness of Diffeomorphism Invariant States on Holonomy–Flux Algebras. Commun. Math. Phys. 267, 703–733 (2006). https://doi.org/10.1007/s00220-006-0100-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0100-7

Keywords

Navigation