Skip to main content
Log in

On the Structure of Eigenfunctions Corresponding to Embedded Eigenvalues of Locally Perturbed Periodic Graph Operators

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The article is devoted to the following question. Consider a periodic self-adjoint difference (differential) operator on a graph (quantum graph) G with a co- compact free action of the integer lattice \(\mathbb{Z}^{n}\). It is known that a local perturbation of the operator might embed an eigenvalue into the continuous spectrum (a feature uncommon for periodic elliptic operators of second order). In all known constructions of such examples, the corresponding eigenfunction is compactly supported. One wonders whether this must always be the case. The paper answers this question affirmatively. What is more surprising, one can estimate that the eigenmode must be localized not far away from the perturbation (in a neighborhood of the perturbation’s support, the width of the neighborhood dependent upon the unperturbed operator only). The validity of this result requires the condition of irreducibility of the Fermi (Floquet) surface of the periodic operator, which is known in some cases and is expected to be satisfied for periodic Schrödinger operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander S. (1985): Superconductivity of networks. A percolation approach to the effects of disorder. Phys. Rev. B, 27, 1541–1557

    Article  MathSciNet  ADS  Google Scholar 

  2. Ashcroft N.W., Mermin N.D. (1976). Solid State Physics. Holt Rinehart and Winston, New York-London

    Google Scholar 

  3. Bättig D., Knörrer H., Trubowitz E. (1991): A directional compactification of the complex Fermi surface. Compositio Math. 79(2): 205–229

    MATH  MathSciNet  Google Scholar 

  4. Cattaneo C. (1997): The spectrum of the continuous Laplacian on a graph. Monatsh. Math. 124, 215–235

    Article  MATH  MathSciNet  Google Scholar 

  5. Chung, F.: Spectral Graph Theory. Providence R.I.: Amer. Math. Soc., 1997

  6. Cycon H.L., Froese R.G., Kirsch W., Simon B. (1987). Schrödinger Operators With Applications to Quantum Mechanics and Global Geometry. Texts and Monographs in Physics. Springer Verlag, Berlin

    Google Scholar 

  7. Dicks W., Schick T. (2002): The Spectral Measure of Certain Elements of the Complex Group Ring of a Wreath Product. Geometriae Dedicata 93, 121–137

    Article  MATH  MathSciNet  Google Scholar 

  8. Eastham M.S.P. (1973): The Spectral Theory of Periodic Differential Equations.Scottish Acad. Press, Edinburgh - London

    MATH  Google Scholar 

  9. Eastham M.S.P., Kalf H. (1982): Schrödinger-type Operators with Continuous Spectra. Pitman, Boston

    MATH  Google Scholar 

  10. Exner P. (1997): A duality between Schrödinger operators on graphs and certain Jacobi matrices. Ann. Inst. H. Poincaré Phys. Theor. 66(4): 359–371

    MATH  MathSciNet  Google Scholar 

  11. Gieseker D., Knörrer H., Trubowitz E. (1992): The Geometry of Algebraic Fermi Curves. Acad. Press, Boston

    MATH  Google Scholar 

  12. Grigorchuk R., Zuk A. (2001): The lamplighter group as a group generated by a 2-state automaton, and its spectrum. Geom. Dedicata 87, 209–244

    Article  MATH  MathSciNet  Google Scholar 

  13. Gromov M. (1987): Hyperbolic groups. In: Gersten S.M. (eds). Essays in Group Theory. MSRI Publ. 8, Springer Verlag, New York, pp 75–263

    Google Scholar 

  14. Harmer M. (2000): Hermitian symplectic geometry and extension theory. J. Phys. A: Math. Gen. 33, 9193–9203

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Knörrer H., Trubowitz J. (1990): A directional compactification of the complex Bloch variety. Comment. Math. Helv. 65, 114–149

    MATH  MathSciNet  Google Scholar 

  16. Kostrykin V., Schrader R. (1999): Kirchhoff’s rule for quantum wires. J. Phys. A 32, 595–630

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Kuchment, P.: To the Floquet theory of periodic difference equations. In: Geometrical and Algebraical Aspects in Several Complex Variables, Cetraro, Italy, 1989, C. Berenstein, D. Struppa, eds., Perth: EditEl, pp. 203–209

  18. Kuchment P. (1993): Floquet Theory for Partial Differential Equations. Birkhäuser, Basel

    MATH  Google Scholar 

  19. Kuchment, P.: The Mathematics of Photonics Crystals, Ch. 7. In: Mathematical Modeling in Optical Science. Bao, G., Cowsar, L., Masters, W. (eds.) Philadelphia: SIAM, 2001, pp 207–272

  20. Kuchment P. (2003): Differential and pseudo-differential operators on graphs as models of mesoscopic systems. In: Begehr H., Gilbert R., Wang M.W. (eds). Analysis and Applications. Kluwer Acad. Publ., Dordretcht, pp 7–30

    Google Scholar 

  21. Kuchment P. (2002): Graph models of wave propagation in thin structures. Waves in Random Media 12(4): R1–R24

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Kuchment P. (2004): Quantum graphs I. Some basic structures. Waves in Random Media 14, S107–S128

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Kuchment, P.: On some spectral problems of mathematical physics. In: Conca, C., Manasevich, R., Uhlmann, G., Vogelius, M.S. (eds.) Partial Differential Equations and Inverse Problems. Contemp. Math. 362, Providence, RI: Amer. Math. Soc., 2004

  24. Kuchment P. (2005): Quantum graphs II. Some spectral properties of quantum and combinatorial graphs. J. Phys. A 38, 4887–4900

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Kuchment, P., Vainberg, B.: On embedded eigenvalues of perturbed periodic Schrödinger operators. In:Spectral and scattering theory (Newark, DE, 1997), New York: Plenum, 1998, pp. 67–75

  26. Kuchment P., Vainberg B. (2000): On absence of embedded eigenvalues for Schrödinger operators with perturbed periodic potentials. Commun. Part. Diff. Equat. 25(9–10): 1809–1826

    MATH  MathSciNet  Google Scholar 

  27. Plis A. (1960): Non-uniqueness in Cauchy’s problem for differential equations of elliptic type. J. Math . Mech. 9, 557–562

    MATH  MathSciNet  Google Scholar 

  28. Quantum Graphs and Their Applications. Kuchment, P. (ed.) Special issue of Waves in Random Media 14(1), (2004)

  29. Reed, M., Simon, B.:Methods of Modern Mathematical Physics. V. 4, NY: Acad. Press, 1978

  30. Rofe-Beketov F.S. (1964): A test for the finiteness of the number of discrete levels introduced into the gaps of a continuous spectrum by perturbations of a periodic potential. Sov. Math. Dokl. 5, 689–692

    MATH  Google Scholar 

  31. Rofe-Beketov, F.S.: Spectrum perturbations, the Knezer-type constants and the effective mass of zones-type potentials. In: Constructive Theory of Functions’84, Sofia: Bulgarian Acad. of Sci., 1984, pp. 757–766

  32. Shaban W., Vainberg B. (2002): Radiation conditions for the difference Schrödinger operators. Applicable Anal. 80, 525–556

    MathSciNet  Google Scholar 

  33. Thomas L.E. (1973): Time dependent approach to scattering from impurities in a crystal. Commun. Math. Phys. 33, 335–343

    Article  ADS  Google Scholar 

  34. Vainberg B. (1966): Principles of radiation, limiting absorption and limiting amplitude in the general theory of partial differential equations. Russ. Math. Surv. 21(3): 115–193

    Article  MathSciNet  Google Scholar 

  35. Wilcox C. (1978): Theory of Bloch waves. J. Anal. Math. 33, 146–167

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kuchment.

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuchment, P., Vainberg, B. On the Structure of Eigenfunctions Corresponding to Embedded Eigenvalues of Locally Perturbed Periodic Graph Operators. Commun. Math. Phys. 268, 673–686 (2006). https://doi.org/10.1007/s00220-006-0105-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0105-2

Keywords

Navigation