Skip to main content
Log in

The Vlasov–Maxwell–Boltzmann System in the Whole Space

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Vlasov–Maxwell–Boltzmann system is one of the most fundamental models to describe the dynamics of dilute charged particles, where particles interact via collisions and through their self-consistent electromagnetic field. We prove existence of global in time classical solutions to the Cauchy problem near Maxwellians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoki K., Bardos C., Takata S. (2003) Knudsen layer for gas mixtures. J. Stat. Phys. 112(3–4): 629–655

    Article  MATH  MathSciNet  Google Scholar 

  2. Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Applied Mathematical Sciences, Vol. 106, New York: Springer-Verlag, 1994

  3. Chapman, S., Cowling, T. G.: The mathematical theory of non-uniform gases. An account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. Third edition, prepared in co-operation with Burnett, D. London: Cambridge University Press, 1970

  4. Desvillettes L., Dolbeault J. (1991) On long time asymptotics of the Vlasov-Poisson-Boltzmann equation. Comm. Partial Differ. Eqs. 16(2–3): 451–489

    Article  MathSciNet  MATH  Google Scholar 

  5. Duan, R., Yang, T., Zhu, C.-J.: Global existence to Boltzmann equation with external force in infinite vacuum. To appear in J. Math. Phys.

  6. Glassey, R. T., The Cauchy problem in kinetic theory. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1996

  7. Glassey R.T., Strauss W.A. (1999) Decay of the linearized Boltzmann–Vlasov system. Transport Theory Statist. Phys. 28(2): 135–156

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Glassey R.T., Strauss W.A. (1999) Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Discrete Contin. Dynam. Systems 5(3): 457–472

    Article  MATH  MathSciNet  Google Scholar 

  9. Guo Y. (2001) The Vlasov–Poisson–Boltzmann system near vacuum. Commun. Math. Phys. 218(2): 293–313

    Article  MATH  ADS  Google Scholar 

  10. Guo Y. (2002) The Vlasov–Poisson–Boltzmann system near Maxwellians. Comm. Pure Appl. Math. 55(9): 1104–1135

    Article  MATH  MathSciNet  Google Scholar 

  11. Guo Y. (2003) The Vlasov–Maxwell–Boltzmann system near Maxwellians. Invent. Math. 153(3): 593–630

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Guo Y. (2004) The Boltzmann equation in the whole space. Indiana Univ. Math. J. 53(4): 1081–1094

    Article  MATH  MathSciNet  Google Scholar 

  13. Lions, P.-L.: Global solutions of kinetic models and related questions. In: Nonequilibrium problems in many-particle systems (Montecatini, 1992), Lecture Notes in Math. 1551, Berlin: Springer, 1993, pp. 58–86

  14. Liu T.-P., Yu S.-H. (2004) Boltzmann equation: micro-macro decompositions and positivity of shock profiles. Commun. Math. Phys. 246(1): 133–179

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Liu T.-P., Yang T., Yu S.-H. (2004) Energy method for Boltzmann equation. Phys. D 188(3–4): 178–192

    Article  MATH  MathSciNet  Google Scholar 

  16. Mischler S. (2000) On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system. Commun. Math. Phys. 210(2): 447–466

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Strain R.M., Guo Y. (2004) Stability of the relativistic Maxwellian in a Collisional Plasma. Commun. Math. Phys. 251(2): 263–320

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Strain R.M., Guo Y. (2006) Almost Exponential Decay Near Maxwellian. Commun. Partial Differ. Eqs. 31(3): 417–429

    Article  MATH  MathSciNet  Google Scholar 

  19. Yang, T., Yu, H., Zhao, H.: Cauchy Problem for the Vlasov–Poisson–Boltzmann System. To appear in Arch. Rational Mech. Anal., 42 pages, available at http://www.math.ntnu.no/conservation/2004/027.pdf

  20. Yang, T., Zhao, H.: Global Existence of Classical Solutions to the Vlasov–Poisson–Boltzmann System. Commun. Math. Phys., to appear. DOI 10.1007/s00220-006-0103-4

  21. Villani, C.: A review of mathematical topics in collisional kinetic theory. Handbook of mathematical fluid dynamics, Vol. I, Amsterdam: North Holland, 2002, pp. 71–305

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Strain.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strain, R.M. The Vlasov–Maxwell–Boltzmann System in the Whole Space. Commun. Math. Phys. 268, 543–567 (2006). https://doi.org/10.1007/s00220-006-0109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0109-y

Keywords

Navigation