Skip to main content
Log in

Multidimensional Continued Fractions, Dynamical Renormalization and KAM Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The disadvantage of ‘traditional’ multidimensional continued fraction algorithms is that it is not known whether they provide simultaneous rational approximations for generic vectors. Following ideas of Dani, Lagarias and Kleinbock-Margulis we describe a simple algorithm based on the dynamics of flows on the homogeneous space \(SL(d, \mathbb{Z}) \backslash SL(d, \mathbb{R})\) (the space of lattices of covolume one) that indeed yields best possible approximations to any irrational vector. The algorithm is ideally suited for a number of dynamical applications that involve small divisor problems. As an example, we explicitly construct a renormalization scheme for the linearization of vector fields on tori of arbitrary dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abad J.J., Koch H. (2000) Renormalization and periodic orbits for Hamiltonian flows. Commun. Math. Phys. 212: 371–394

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2.  Ávila A., Krikorian R.: Reducibility or non-uniform hyperbolicity for quasiperiodic Schrödinger cocycles. Ann. of Math., to appear

  3. Bricmont J., Gawȩdzki K., Kupiainen A. (1999) KAM theorem and quantum field theory. Commun. Math. Phys. 201, 699–727

    Article  ADS  MATH  Google Scholar 

  4. Cassels J.W.S. (1957) An Introduction to Diophantine Approximation. Cambridge, Cambridge University Press

    MATH  Google Scholar 

  5. Dani S.G. (1985) Divergent trajectories of flows on homogeneous spaces and Diophantine approximation. J. Reine Angew. Math. 359, 55–89

    MathSciNet  MATH  Google Scholar 

  6. Feigenbaum M.J. (1978) Quantitative universality for a class of non-linear transformations. J. Stat. Phys. 19, 25–52

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Gaidashev D.G. (2005) Renormalization of isoenergetically degenerate Hamiltonian flows and associated bifurcations of invariant tori. Discrete Contin. Dyn. Syst. 13, 63–102

    MathSciNet  MATH  Google Scholar 

  8. Gallavotti G. (1994) Twistless KAM tori. Commun. Math. Phys. 164, 145–156

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Gentile G., Mastropietro V. (1996) Methods for the analysis of the Lindstedt series for KAM tori and renormalizability in classical mechanics. A review with some applications. Rev. Math. Phys. 8, 393–444

    ADS  MathSciNet  MATH  Google Scholar 

  10. Grabiner D.J., Lagarias J.C. (2001) Cutting sequences for geodesic flow on the modular surface and continued fractions. Monatsh. Math. 133, 295–339

    Article  MathSciNet  MATH  Google Scholar 

  11. Hardcastle D.M. (2002) The three-dimensional Gauss algorithm is strongly convergent almost everywhere. Experiment. Math. 11, 131–141

    MathSciNet  MATH  Google Scholar 

  12. Hardcastle D.M., Khanin K. (2002) The d-dimensional Gauss transformation: strong convergence and Lyapunov exponents. Experiment. Math. 11, 119–129

    MathSciNet  MATH  Google Scholar 

  13. Herman M.R. (1989) Inégalités “a priori” pour des tores lagrangiens invariants par des difféomorphismes symplectiques. Inst. Hautes Études Sci. Publ. Math. 70, 47–101

    MathSciNet  MATH  Google Scholar 

  14. Hille, E., Phillips, R. S.: Functional analysis and semi-groups, Volume 31. AMS Colloquium Publications, Rev. ed. of 1957, Providence, RI:Amer. Math. soc., 1974

  15. Khanin, K., Lopes Dias, J., Marklof, J.: Renormalization of multidimensional Hamiltonian flows. Nonlinearity (2006) (to appear) Preprint, 2005, available at http://pascal.iseg.utl.pt/~jldias/KLM.pdf

  16. Khanin K., Sinai Ya (1986) The renormalization group method and Kolmogorov-Arnold-Moser theory. In: Sagdeev R.Z. (eds) Nonlinear phenomena in plasma physics and hydrodynamics. Moscow, Mir, pp. 93–118

    Google Scholar 

  17. Kleinbock D.Y., Margulis G.A. (1998) Flows on homogeneous spaces and Diophantine approximation on manifolds. Ann. of Math 148: 339–360

    Article  MathSciNet  MATH  Google Scholar 

  18. Koch H. (1999) A renormalization group for Hamiltonians, with applications to KAM tori. Erg. Theor. Dyn. Syst. 19, 475–521

    Article  MATH  Google Scholar 

  19. Koch H. (2002) On the renormalization of Hamiltonian flows, and critical invariant tori. Discrete Contin. Dyn. Syst. 8(3): 633–646

    Article  MathSciNet  MATH  Google Scholar 

  20. Koch H. (2004) A renormalization group fixed point associated with the breakup of golden invariant tori. Discrete Contin. Dyn. Syst. 11, 881–909

    Article  MathSciNet  MATH  Google Scholar 

  21. Lagarias J.C. (1994) Geodesic multidimensional continued fractions. Proc. London Math. Soc. 69, 464–488

    MathSciNet  MATH  Google Scholar 

  22. Lopes Dias J. (2002) Renormalization of flows on the multidimensional torus close to a KT frequency vector. Nonlinearity 15, 647–664

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Lopes Dias J. (2002) Renormalization scheme for vector fields on \(\mathbb{T}^{2}\) with a diophantine frequency. Nonlinearity 15, 665–679

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Lopes Dias J. (2006) Brjuno condition and renormalization for Poincaré flows. Discrete Contin. Dyn. Syst. 15, 641–656

    Article  MathSciNet  MATH  Google Scholar 

  25. MacKay R.S. (1993) Renormalisation in area-preserving maps. River Edge, NJ: World Scientific Publishing Co. Inc.,

    MATH  Google Scholar 

  26. MacKay R.S. (1995) Three topics in Hamiltonian dynamics. In: Aizawa Y., Saito S., Shiraiwa K. (eds) Dynamical Systems and Chaos, Volume 2. Singapore, World Scientific

    Google Scholar 

  27. Moore C.C. (1966) Ergodicity of flows on homogeneous spaces. Am. J. Math. 88, 154–178

    Article  MATH  Google Scholar 

  28. Moser J. (1973) Stable and random motions in dynamical systems. Annals Math. Studies. Princeton, NJ: Princeton Univ. Press

    Google Scholar 

  29. Raghunathan M.S. (1972) Discrete subgroups of Lie groups. Berlin-Heidelberg-New York, Springer-Verlag

    MATH  Google Scholar 

  30. Schweiger F. (2000) Multidimensional continued fractions. Oxford Science Publications. Oxford, Oxford University Press

    Google Scholar 

  31. Yoccoz, J.-C.: Petits diviseurs en dimension 1 (Small divisors in dimension one). Astérisque 231, 1995

  32. Yoccoz J.-C. (2002) Analytic linearization of circle diffeomorphisms. In: Dynamical systems and small divisors, Eds. J. Marmi, C. Yoccoz, Lecture Notes in Mathematics, 1784, Berlin-Heidelberg-New York: Springer-Verlag

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Marklof.

Additional information

Communicated by G. Gallavotti

An erratum to this article is available at http://dx.doi.org/10.1007/BFb0120366.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanin, K., Dias, J.L. & Marklof, J. Multidimensional Continued Fractions, Dynamical Renormalization and KAM Theory. Commun. Math. Phys. 270, 197–231 (2007). https://doi.org/10.1007/s00220-006-0125-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0125-y

Keywords

Navigation