Skip to main content
Log in

Modular Group Representations and Fusion in Logarithmic Conformal Field Theories and in the Quantum Group Center

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The SL(2, ℤ)-representation π on the center of the restricted quantum group at the primitive 2pth root of unity is shown to be equivalent to the SL(2, ℤ)-representation on the extended characters of the logarithmic (1, p) conformal field theory model. The multiplicative Jordan decomposition of the ribbon element determines the decomposition of π into a ``pointwise'' product of two commuting SL(2, ℤ)-representations, one of which restricts to the Grothendieck ring; this restriction is equivalent to the SL(2, ℤ)-representation on the (1, p)-characters, related to the fusion algebra via a nonsemisimple Verlinde formula. The Grothendieck ring of at the primitive 2pth root of unity is shown to coincide with the fusion algebra of the (1, p) logarithmic conformal field theory model. As a by-product, we derive q-binomial identities implied by the fusion algebra realized in the center of .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras. I. J. Amer. Math. Soc. 6, 905–947 (1993); II. J. Amer. Math. Soc. 6, 949–1011 (1993); III. J. Amer. Math. Soc. 7, 335–381 (1994); IV. J. Amer. Math. Soc. 7, 383–453 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Moore, G., Seiberg, N.: Lectures on RCFT. In: Physics, Geometry, and Topology (Trieste Spring School 1989), New York: Plenum, 1990, p. 263

  3. Finkelberg, M.: An equivalence of fusion categories. Geometric and Functional Analysis (GAFA) 6, 249–267 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Turaev, V.G.: Quantum Invariants of Knots and 3-Manifolds. Berlin–New York: Walter de Gruyter, 1994

  5. Lyubashenko, V.: Invariants of 3-manifolds and projective representations of mapping class groups via quantum groups at roots of unity. Commun. Math. Phys. 172, 467–516 (1995); Modular properties of ribbon abelian categories. In: Symposia Gaussiana, Proc. of the 2nd Gauss Symposium, Munich, 1993, Conf. A , Berlin-New York: Walter de Gruyter, 1995, pp. 529–579; Modular Transformations for Tensor Categories. J. Pure Applied Algebra 98, 279–327 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Lyubashenko, V., Majid, S.: Braided groups and quantum Fourier transform. J. Algebra 166, 506–528 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kausch, H.G.: Extended conformal algebras generated by a multiplet of primary fields. Phys. Lett. B 259, 448 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  8. Gaberdiel, M.R., Kausch, H.G.: A rational logarithmic conformal field theory. Phys. Lett. B 386, 131 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  9. Flohr, M.A.I.: On modular invariant partition functions of conformal field theories with logarithmic operators. Int. J. Mod. Phys. A11, 4147 (1996)

    Google Scholar 

  10. Flohr, M.: On Fusion Rules in Logarithmic Conformal Field Theories. Int. J. Mod. Phys. A12, 1943–1958 (1997)

    Google Scholar 

  11. Kerler, T.: Mapping class group action on quantum doubles. Commun. Math. Phys. 168, 353–388 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge: Cambridge University Press, 1994

  13. Gaberdiel, M.R., Kausch, H.G.: Indecomposable fusion products. Nucl. Phys. B 477, 293 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  14. Verlinde, E.: Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys. B 300, 360 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  15. Fuchs, J., Hwang, S., Semikhatov, A.M., Tipunin, I.Yu.: Nonsemisimple fusion algebras and the Verlinde formula. Commun. Math. Phys. 247, 713–742 (2004)

    Article  ADS  MATH  Google Scholar 

  16. Gurarie, V., Ludwig, A.W.W.: Conformal field theory at central charge c=0 and two-dimensional critical systems with quenched disorder. http://arxiv.org/list/hep-th/0409105, 2004

  17. Feigin, B.L., Gainutdinov, A.M., Semikhatov, A.M., Tipunin, I.Yu.: Kazhdan-Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic CFT, math.QA/0512621

  18. Reshetikhin, N.Yu., Turaev, V.G.: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys., 127, 1–26 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Lachowska, A.: On the center of the small quantum group. http://arxiv.org/list/math.QA/0107098, 2001

  20. Ostrik, V.: Decomposition of the adjoint representation of the small quantum sl2. Commun. Math. Phys. 186, 253–264 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Gluschenkov, D.V., Lyakhovskaya, A.V.: Regular representation of the quantum Heisenberg double {U q (sl(2)), Fun q (SL(2))} (q is a root of unity). http://arxiv.org/list/hep-th/9311075, 1993

  22. Jimbo, M., Miwa, T., Takeyama, Y.: Counting minimal form factors of the restricted sine-Gordon model http://arxiv.org/list/math-ph/0303059, 2003

  23. Gaberdiel, M.R.: An algebraic approach to logarithmic conformal field theory. Int. J. Mod. Phys. A18, 4593–4638 (2003)

    Google Scholar 

  24. Flohr, M.: Bits and Pieces in Logarithmic Conformal Field Theory. Int. J. Mod. Phys. A18, 4497–4592 (2003)

    Google Scholar 

  25. Gurarie, V.; Logarithmic operators in conformal field theory. Nucl. Phys. B410, 535 (1993)

    Google Scholar 

  26. Rohsiepe, F.: Nichtunitäre Darstellungen der Virasoro-Algebra mit nichttrivialen Jordanblöcken. Diploma Thesis, Bonn, (1996) [BONN-IB-96-19]

  27. Fjelstad, J., Fuchs, J., Hwang, S., Semikhatov, A.M., Tipunin, I.Yu.: Logarithmic conformal field theories via logarithmic deformations. Nucl. Phys. B633, 379 (2002)

  28. Semikhatov, A.M., Taormina, A., Tipunin, I.Yu.: Higher-level Appell functions, modular transformations, and characters. http://arxiv.org/list/math.QA/0311314, 2003

  29. Kač, V.G.: Infinite Dimensional Lie Algebras. Cambridge: Cambridge University Press, 1990

  30. Fuchs, J.: Affine Lie algebras and quantum groups. Cambridge: Cambridge University Press, 1992

  31. Reshetikhin, N.Yu., Semenov-Tian-Shansky, M.A.: Quantum R-matrices and factorization problems. J. Geom. Phys. 5, 533–550 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  32. Bakalov, B., Kirillov, A.A.: Lectures on Tensor Categories and Modular Functors. Providence, RI: AMS, 2001

  33. Fuchs, J., Runkel, I., Schweigert, C.: TFT construction of RCFT correlators I: Partition functions. Nucl. Phys. B 646, 353 (2002)

    Article  ADS  MATH  Google Scholar 

  34. Fuchs, J., Runkel, I., Schweigert, C.: TFT construction of RCFT correlators II: Unoriented world sheets. Nucl. Phys. B678, 511–637 (2004)

    Google Scholar 

  35. Kerler, T., Lyubashenko, V.V.: Non-Semisimple Topological Quantum Field Theories for 3- Manifolds with Corners. Springer Lecture Notes in Mathematics 1765, Berlin-Heidelberg-New York: Springer Verlag, 2001

  36. Larson, R.G., Sweedler, M.E.: An associative orthogonal bilinear form for Hopf algebras. Amer. J. Math. 91, 75–94 (1969)

    MATH  MathSciNet  Google Scholar 

  37. Radford, D.E.: The order of antipode of a finite-dimensional Hopf algebra is finite. Amer. J. Math 98, 333–335 (1976)

    MATH  MathSciNet  Google Scholar 

  38. Drinfeld, V.G.: On Almost Cocommutative Hopf Algebras. Leningrad Math. J. 1(2), 321–342 (1990)

    MathSciNet  Google Scholar 

  39. Kassel, C.: Quantum Groups. New York: Springer-Verlag, 1995

  40. Sweedler, M.E.: Hopf Algebras. New York: Benjamin, 1969

  41. Radford, D.E.: The trace function and Hopf algebras. J. Alg. 163, 583–622 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  42. Gantmakher, F.R.: Teoriya Matrits [in Russian]. Moscow: Nauka, 1988

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.L. Feigin.

Additional information

Communicated by L. Takhtajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feigin, B., Gainutdinov, A., Semikhatov, A. et al. Modular Group Representations and Fusion in Logarithmic Conformal Field Theories and in the Quantum Group Center. Commun. Math. Phys. 265, 47–93 (2006). https://doi.org/10.1007/s00220-006-1551-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-1551-6

Keywords

Navigation