Skip to main content
Log in

Continuity of Information Transport in Surjective Cellular Automata

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce a local version of the Shannon entropy in order to describe information transport in spatially extended dynamical systems, and to explore to what extent information can be viewed as a local quantity. Using an appropriately defined information current, this quantity is shown to obey a local conservation law in the case of one-dimensional reversible cellular automata with arbitrary initial measures. The result is also shown to apply to one-dimensional surjective cellular automata in the case of shift-invariant measures. Bounds on the information flow are also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C.H. (1973). Logical reversibility of computation. IBM J. Res. Develop. 17(6): 525–532

    MATH  MathSciNet  Google Scholar 

  2. Dab D., Lawniczak A., Boon J.P., Kapral R. (1990). Cellular-automaton model for reactive systems. Phys. Rev. Lett. 64: 2462–2465

    Article  ADS  Google Scholar 

  3. Ferrari P., Maass A., Martínez S., Ney P. (2000). Cesàro mean distribution of group automata starting from measures with summable decay. Ergodic Theory Dynam. Systems. 20(6): 1657–1670

    Article  MATH  MathSciNet  Google Scholar 

  4. Frisch U., Hasslacher B., Pomeau Y. (1986). Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 56: 1505–1508

    Article  ADS  Google Scholar 

  5. Gänssler, P., Stute, W. (1977). Wahrscheinlichkeitstheorie. Springer Verlag, Berlin Heidelberg New York

    MATH  Google Scholar 

  6. Gray R.M. (1988). Probability, random processes and ergodic properties. Springer-Verlag, New York

    MATH  Google Scholar 

  7. Hardy J., Pomeau Y., de Pazzis O. (1973). Time evolution of two-dimensional model system. I. invariant states and time correlation functions. J. Math. Phys. 14: 1746–1759

    Article  ADS  Google Scholar 

  8. Hedlund G.A. (1969). Endomorphisms and automorphisms of the shift dynamical system. Math. Syst. Theory. 3: 320–375

    Article  MATH  MathSciNet  Google Scholar 

  9. Host B., Maass A., Martínez S. (2003). Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discrete Contin. Dyn. Syst. 9(6): 1423–1446

    Article  MATH  MathSciNet  Google Scholar 

  10. Ito M., Osato N., Nasu M. (1983). Linear cellular automata over Zm. J. Comput. System Sci. 27(2): 125–140

    Article  MATH  MathSciNet  Google Scholar 

  11. Jaynes E.T. (1957). Information theory and statistical mechanics. Phys. Rev. 106: 620–630

    Article  ADS  MathSciNet  Google Scholar 

  12. Keller G. (1998). Equilibrium states in ergodic theory, Volume 42 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge

    Google Scholar 

  13. Kullback S., Leibler R.A. (1951). On information and sufficiency. Ann. Math. Stat. 22: 79–86

    MathSciNet  MATH  Google Scholar 

  14. Landauer R. (1961). Irreversibility and heat generation in the computing process. IBM J. Res. Develop. 5(3): 183–191

    MathSciNet  MATH  Google Scholar 

  15. Lind D.A. (1984). Applications of ergodic theory and sofic systems to cellular automata. Physica D. 10: 36–44

    Article  ADS  MathSciNet  Google Scholar 

  16. Lindgren K. (1987). Correlations and random information in cellular automata. Complex Systems. 1: 529–543

    MATH  MathSciNet  Google Scholar 

  17. Lindgren K. (1988). Microscopic and macroscopic entropy. Phys. Rev. A. 38: 4794–4798

    Article  ADS  Google Scholar 

  18. Pivato M., Yassawi R. (2002). Limit measures for affine cellular automata. Ergodic Theory Dynam. Systems. 22(4): 1269–1287

    Article  MATH  MathSciNet  Google Scholar 

  19. Pivato M., Yassawi R. (2004). Limit measures for affine cellular automata II. Ergodic Theory Dynam. Systems. 24(6): 1961–1980

    Article  MATH  MathSciNet  Google Scholar 

  20. Richardson D. (1972). Tesselations with local transformations. J. Comput. System Sci. 5: 373–388

    Google Scholar 

  21. Takesue S. (1987). Reversible cellular automata and statistical mechanics. Phys. Rev. Lett. 59: 2499–2502

    Article  ADS  MathSciNet  Google Scholar 

  22. Takesue S. (1990). Fourier’s law and the Green-Kubo formula in a cellular-automaton model. Phys. Rev. Lett. 64: 252–255

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Toffoli T. (1988). Information transport obeying the continuity equation. IBM J. Res. Develop. 32(1): 29–36

    Article  MathSciNet  Google Scholar 

  24. Toffoli T., Margolus N.H. (1990). Invertible cellular automata: a review. Physica D. 45(1–3): 229–253

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Vichniac G. (1984). Simulating physics with cellular automata. Physica D. 10: 96–115

    Article  ADS  MathSciNet  Google Scholar 

  26. Walters P. (1982). An Introduction to Ergodic Theory. Number 79 in Graduate Texts in Mathematics. Springer, Berlin Heidelberg New York

    Google Scholar 

  27. Wheeler J.A. (1989). Information, physics, quantum: The search for links. In: Zurek, WH (eds) Complexity, Entropy and the Physics of Information. Addison-Wesley, Redwood City, CA

    Google Scholar 

  28. Zurek W.H. (1989). Algorithmic randomness and physical entropy. Phys. Rev. A. 40: 4731–4751

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torbjørn Helvik.

Additional information

Communicated by G. Gallavotti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helvik, T., Lindgren, K. & Nordahl, M.G. Continuity of Information Transport in Surjective Cellular Automata. Commun. Math. Phys. 272, 53–74 (2007). https://doi.org/10.1007/s00220-007-0192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0192-8

Keywords

Navigation