Skip to main content
Log in

Decay and Non-Decay of the Local Energy for the Wave Equation on the De Sitter–Schwarzschild Metric

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe an expansion of the solution of the wave equation on the De Sitter–Schwarzschild metric in terms of resonances. The principal term in the expansion is due to a resonance at 0. The error term decays polynomially if we permit a logarithmic derivative loss in the angular directions and exponentially if we permit an \({\varepsilon}\) derivative loss in the angular directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alexandrova I., Bony J.-F., Ramond T.: Semiclassical scattering amplitude at the maximum point of the potential. Asymptotic Analysis 58(1–2), 57–125 (2008)

    Google Scholar 

  2. Amrein, W., Boutet de Monvel, A., Georgescu, V.: C 0 -groups, commutator methods and spectral theory of N-body Hamiltonians, Progress in Mathematics, Vol. 135, Basel-Boston: Birkhäuser Verlag, 1996

  3. Bachelot A., Motet-Bachelot A.: Les résonances d’un trou noir de Schwarzschild. Ann. Inst. H. Poincaré Phys. Théor. 59(1), 3–68 (1993)

    MATH  MathSciNet  Google Scholar 

  4. Blue, P., Soffer, A.: Improved decay rates with small regularity loss for the wave equation about a Schwarzschild black hole. http://arXiv.org/list/math/0612168, 2006

  5. Blue P., Sterbenz J.: Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space. Commun. Math. Phys. 268(2), 481–504 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Bony J.-F., Michel L.: Microlocalization of resonant states and estimates of the residue of the scattering amplitude. Commun. Math. Phys. 246(2), 375–402 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Burq N.: Smoothing effect for Schrödinger boundary value problems. Duke Math. J. 123(2), 403–427 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Burq N., Zworski M.: Resonance expansions in semi-classical propagation. Commun. Math. Phys. 223(1), 1–12 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Chandrasekhar, S.: The mathematical theory of black holes. International Series of Monographs on Physics, Vol. 69, The Clarendon Press, Oxford: Oxford University Press, 1992

  10. Christiansen T., Zworski M.: Resonance wave expansions: two hyperbolic examples. Commun. Math. Phys. 212(2), 323–336 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Christodoulou, D., Klainerman, S.: The global nonlinear stability of the Minkowski space. Princeton Mathematical Series, Vol. 41, Princeton, NJ: Princeton University Press, 1993

  12. Dafermos M., Rodnianski I.: A proof of Price’s law for the collapse of a self-gravitating scalar field. Invent. Math. 162(2), 381–457 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Finster F., Kamran N., Smoller J., Yau S.-T.: Decay of solutions of the wave equation in the Kerr geometry. Commun. Math. Phys. 264(2), 465–503 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  14. Guillarmou, C.: Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds. Duke Math. J. 129(1), 1–37 (2005)

    Google Scholar 

  15. Ikawa M.: Decay of solutions of the wave equation in the exterior of two convex obstacles. Osaka J. Math. 19(3), 459–509 (1982)

    MATH  MathSciNet  Google Scholar 

  16. Lax, P., Phillips, R.: Scattering theory, Second ed. With appendices by C. Morawetz and G. Schmidt Pure and Applied Mathematics, Vol. 26, London-New York: Academic Press Inc., 1989

  17. Martinez A.: Resonance free domains for non globally analytic potentials. Ann. Henri Poincaré 3(4), 739–756 (2002)

    Article  MATH  Google Scholar 

  18. Mazzeo R., Melrose R.: Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75(2), 260–310 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Melrose R., Sjöstrand J.: Singularities of boundary value problems. I. Commun. Pure Appl. Math. 31(5), 593–617 (1978)

    Article  MATH  Google Scholar 

  20. Mourre E.: Absence of singular continuous spectrum for certain selfadjoint operators. Commun. Math. Phys. 78(3), 391–408 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  21. Nakamura S., Stefanov P., Zworski M.: Resonance expansions of propagators in the presence of potential barriers. J. Funct. Anal. 205(1), 180–205 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ralston J.: Solutions of the wave equation with localized energy. Commun. Pure Appl. Math. 22, 807–823 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  23. Reed, M., Simon, B.: Methods of modern mathematical physics. IV. New York: Academic Press, 1978

  24. Reed, M., Simon, B.: Methods of modern mathematical physics. III. New York: Academic Press, 1979

  25. Sá Barreto A., Zworski M.: Distribution of resonances for spherical black holes. Math. Res. Lett. 4(1), 103–121 (1997)

    MATH  MathSciNet  Google Scholar 

  26. Sjöstrand, J.: Semiclassical resonances generated by nondegenerate critical points. In: Pseudodifferential operators (Oberwolfach, 1986), Lecture Notes in Math., Vol. 1256, Berlin-Heidelberg-New York: Springer, 1987, pp. 402–429

  27. Sjöstrand, J.: A trace formula and review of some estimates for resonances, Microlocal analysis and spectral theory (Lucca, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 490, Dordrecht: Kluwer Acad. Publ., 1997, pp. 377–437

  28. Sjöstrand, J.: Lectures on resonances. Preprint available on http://www.math.polytechnique.fr/~sjoestrand, 2007, pp. 1–169

  29. Sjöstrand J., Zworski M.: Complex scaling and the distribution of scattering poles. J. Amer. Math. Soc. 4(4), 729–769 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tang S.-H., Zworski M.: From quasimodes to resonances. Math. Res. Lett. 5(3), 261–272 (1998)

    MATH  MathSciNet  Google Scholar 

  31. Tang S.-H., Zworski M.: Resonance expansions of scattered waves. Comm. Pure Appl. Math. 53(10), 1305–1334 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tang, S.-H., Zworski, M.: Potential scattering on the real line. Preprint available on http://math.berkeley.edu/~zworski/, 2007, pp. 1–46

  33. Vaĭnberg, B.: Asymptotic methods in equations of mathematical physics, Gordon & Breach Science Publishers, 1989

  34. Zworski M.: Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces. Invent. Math. 136(2), 353–409 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Bony.

Additional information

Communicated by G.W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bony, JF., Häfner, D. Decay and Non-Decay of the Local Energy for the Wave Equation on the De Sitter–Schwarzschild Metric. Commun. Math. Phys. 282, 697–719 (2008). https://doi.org/10.1007/s00220-008-0553-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0553-y

Keywords

Navigation