Skip to main content
Log in

On the Finite Energy Weak Solutions to a System in Quantum Fluid Dynamics

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we consider the global existence of weak solutions to a class of Quantum Hydrodynamics (QHD) systems with initial data, arbitrarily large in the energy norm. These type of models, initially proposed by Madelung [44], have been extensively used in Physics to investigate Superfluidity and Superconductivity phenomena [19,38] and more recently in the modeling of semiconductor devices [20] . Our approach is based on various tools, namely the wave functions polar decomposition, the construction of approximate solution via a fractional steps method which iterates a Schrödinger Madelung picture with a suitable wave function updating mechanism. Therefore several a priori bounds of energy, dispersive and local smoothing type, allow us to prove the compactness of the approximating sequences. No uniqueness result is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio L.: Transport Equations and Cauchy Problem for BV Vector Fields. Invent. Math. 158, 227–260 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Ancona M., Iafrate G.: Quantum correction to the equation of state of an electron gas in a semiconductor. Phys. Rev. B 39, 9536–9540 (1989)

    Article  ADS  Google Scholar 

  3. Aubin J.-P.: Un Théoréme de compacité. C. R. Acad. Sci. 256, 5042–5044 (1963)

    MATH  MathSciNet  Google Scholar 

  4. Ben Abdallah N., Méhats F., Schmeiser C., Weishäupl R.M.: The nonlinear Schrödinger equation with a strongly anisotropic harmonic potential. SIAM J. Math. Anal. 37(1), 189–199 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brenier Y.: Polar Factorization and Monotone Rearrangement of Vector-Valued Function. Comm. Pure Appl. Math. 44, 375–417 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brezis H.: How to recognize constant functions. Connections with Sobolev spaces. Russ. Math. Surv. 57(4), 693 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carlen E.: Conservative Diffusions. Commun. Math. Phys. 94, 293–315 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics 10, New York University Courant Institute of Mathematical Sciences, Providence, RI:Amer. Math. Soc., 2003

  9. Constantin P., Saut J.C.: Local Smoothing Properties of Dispersive Equations. J. Amer. Math. Soc. 1, 413–439 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cheng N.-H., Shatah J., Uhlenbeck K.: Schrödinger Maps. Comm. Pure Appl. Math. 53, 590–602 (2000)

    Article  MathSciNet  Google Scholar 

  11. Colliander J., Keel M., Staffilani G., Takaoka H., Tao T.: Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \({\mathbb {R}^3}\) . Ann. Math. 167(3), 1–100 (2007)

    MathSciNet  Google Scholar 

  12. Dalfovo F., Giorgini S., Pitaevskii L., Stringari S: Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    Article  ADS  Google Scholar 

  13. Degond P., Gallego S., Méhats F.: Isothermal quantum hydrodynamics: derivation, asymptotic analysis, and simulation. Multiscale Model. Simul. 6(1), 246–272 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Degond P., Gallego S., Méhats F.: On quantum hydrodynamic and quantum energy transport models. Commun. Math. Sci. 5(4), 1–22 (2007)

    MathSciNet  Google Scholar 

  15. Degond P., Ringhofer C.: Quantum moment hydrodynamics and the entropy principle. J. Stat. Phys. 112, 587–628 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Di Perna R.J., Lions P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  17. Exner P., Seba P., Sadreev A.F., Streda P., Feher P.: Strength of Topologically Induced Magnetic Moments in a Quantum Device. Phys. Rev. Lett. 80, 1710–1713 (1998)

    Article  ADS  Google Scholar 

  18. Federer H., Ziemer W.P.: The Lebesgue set of a function whose distribution Derivatives are p th power summable. Indiana Univ. Math. J. 22(2), 139–158 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  19. Feynman R.P.: Superfluidity and Superconductivity. Rev. Mod. Phys. 29(2), 205 (1957)

    Article  ADS  Google Scholar 

  20. Gardner C.: The Quantum Hydrodynamic Model for Semiconductor Devices. SIAM J. Appl. Math. 54, 409–427 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Gasser I., Markowich P.: Quantum hydrodynamics, Wigner transforms and the classical limit. Asymptot. Anal. 14(2), 97–116 (1997)

    MATH  MathSciNet  Google Scholar 

  22. Gianazza, U., Savaré, G., Toscani, G.: The Wasserstein gradient flow of the Fisher information and the Quantum Drift-Diffusion equation. Preprint IMATI-CNR, 2006

  23. Ginibre J., Velo G.: The global Cauchy problem for the nonlinear Schrödinger equations revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 2, 309–327 (1987)

    MathSciNet  Google Scholar 

  24. Guerra F., Morato L.: Quantization of Dynamical Systems and Stochastic Control Theory. Phys. Rev. D 27, 1771–1786 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  25. Hayashi N., Nakamitsu K., Tsutsumi M.: On Solutions of the Initial Value Problem for the Nonlinear Schrödinger Equations. J. Funct. Anal. 71, 218–245 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. Jüngel A.: A steady-state quantum Euler-Poisson system for semiconductors. Commun. Math. Phys. 194, 463–479 (1998)

    Article  MATH  ADS  Google Scholar 

  27. Jüngel A., Li H.-L., Matsumura A.: The relaxation-time limit in the quantum hydrodynamic equations for semiconductors. J. Diff. Eq. 225, 440–464 (2006)

    Article  MATH  Google Scholar 

  28. Jüngel A., Mariani M.C., Rial D.: Local Existence of Solutions to the Transient Quantum Hydrodynamic Equations. Math. Models Methods Appl. Sci. 12(4), 485–495 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Jüngel A., Matthes D.: A derivation of the isothermal quantum hydrodynamic equations using entropy minimization. Z. Angew. Math. Mech. 85, 806–814 (2005)

    Article  MATH  Google Scholar 

  30. Jüngel A., Matthes D.: The Derrida-Lebowitz-Speer-Spohn equation: existence, non-uniqueness, and decay rates of the solutions. SIAM J. Math. Anal. 39, 1996–2015 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Jüngel A., Matthes D., Milisic J.P.: Derivation of new quantum hydrodynamic equations using entropy minimization. SIAM J. Appl. Math. 67(1), 46–68 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hutchinson D.A.W., Zaremba E., Griffin A.: Finite Temperature Excitations of a Trapped Bose Gas. Phys. Rev. Lett. 78, 1842 (1997)

    Article  ADS  Google Scholar 

  33. Kadanoff L.P., Baym G.: Quantum Statistical Mechanics. Benjamin, N.Y. (1962)

    MATH  Google Scholar 

  34. Khalatnikov I.M.: An introduction to the Theory of Superfluidity. Benjamin, N.Y. (1965)

    Google Scholar 

  35. Keel M., Tao T.: Endpoint Strichartz Estimates. Amer. J. Math. 120, 955–980 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kirkpatrick T.R., Dorfman J.R.: Transport theory for a weakly interacting condensed Bose gas. Phys. Rev. A 28, 2576 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  37. Kostin M.: On the Schrödinger-Langevin equation. J. Chem. Phys. 57, 3589–3591 (1972)

    Article  ADS  Google Scholar 

  38. Landau L.D.: Theory of the Superfluidity of Helium II. Phys. Rev. 60, 356 (1941)

    Article  MATH  ADS  Google Scholar 

  39. Lattanzio C., Marcati P.: The relaxation to the drift-diffusion system for the 3-D isentropic Euler-Poisson model for semiconductors. Discrete Cont. Dyn. Systems 5(2), 449–455 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  40. Li H., Lin C.-K.: Semiclassical limit and well-posedness of nonlinear Schrödinger-Poisson systems. EJDE 93, 1–17 (2003)

    MathSciNet  Google Scholar 

  41. Li H.L., Marcati P.: Existence and asymptotic behavior of multi-dimensional quanntum hydrodynamic model for semiconductors. Commun. Math. Phys. 245(2), 215–247 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Lifshitz E.M., Pitaevskii L.: Physical Kinetics. Pergamon, Oxfords (1981)

    Google Scholar 

  43. Lions J.-L.: Equations différentialles opérationnells et problemes aux limites. Springer, Berlin (1961)

    Google Scholar 

  44. Madelung E.: Quantentheorie in hydrodynamischer form. Z. Physik 40, 322 (1927)

    Article  ADS  Google Scholar 

  45. Marcati P., Natalini R.: Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation. Arch. Rat. Mech. Anal. 129(2), 129–145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  46. Markowich P., Ringhofer C.: Quantum hydrodynamics for semiconductors in the high-field case. Appl. Math. Lett. 7(5), 37–41 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  47. Nelson E.: Quantum Fluctuations. Princeton University Press, Princeton, NJ (1984)

    Google Scholar 

  48. Pauli, W.: In: Handbuch der Physik, edited by H. Geiger, K. Scheel, Berlin:Springer, 1933, Vol. 24, pt. 1, p. 98.

  49. Rakotoson J.M., Temam R.: An Optimal Compactness Theorem and Application to Elliptic-Parabolic Systems. Appl. Math. Letters 14, 303–306 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  50. Seba P., Kuhl U., Barth M., Stöckmann H-J.: Experimental verification of topologically induced vortices inside a billiard. J. Phys. A: Math. Gen. 32, 8225–8230 (1999)

    Article  MATH  ADS  Google Scholar 

  51. Shatah, J., Struwe, M.: Geometric wave equations. Courant Lecture Notes in Math. 2, Providence, RI:Amer. Math. Soc., 1998

  52. Simon J.: Compact sets in the space L p(0, T; B). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  53. Sjölin P.: Regularity of solutions to the Schrödinger equation. Duke Math. J. 55(3), 699–715 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  54. Sogge C.: Fourier integrals in classical analysis. Cambridge Univ. Press, Cambridge (1993)

    MATH  Google Scholar 

  55. Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis. CBMS regional conference series in mathematics, Providence, RI:Amer. Math. Soc., 2006

  56. Teufel S., Tumulka R.: Simple proof for global existence of bohmian trajectories. Commun. Math. Phys. 258, 349–365 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  57. Vega L.: Schödinger equations: pointwise convergence to the initial data. Proc. AMS 102(4), 874–878 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  58. Weigert S.: How to determine a quantum state by measurements: the Pauli problem for a particle with arbitrary potential. Phys. Rev. A 53(4), 2078–2083 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  59. Wigner E.: On the quantum correction for the thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierangelo Marcati.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonelli, P., Marcati, P. On the Finite Energy Weak Solutions to a System in Quantum Fluid Dynamics. Commun. Math. Phys. 287, 657–686 (2009). https://doi.org/10.1007/s00220-008-0632-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0632-0

Keywords

Navigation