Skip to main content
Log in

Localization Bounds for Multiparticle Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the spectral and dynamical properties of quantum systems of n particles on the lattice \({\mathbb{Z}^d}\) , of arbitrary dimension, with a Hamiltonian which in addition to the kinetic term includes a random potential with iid values at the lattice sites and a finite-range interaction. Two basic parameters of the model are the strength of the disorder and the strength of the interparticle interaction. It is established here that for all n there are regimes of high disorder, and/or weak enough interactions, for which the system exhibits spectral and dynamical localization. The localization is expressed through bounds on the transition amplitudes, which are uniform in time and decay exponentially in the Hausdorff distance in the configuration space. The results are derived through the analysis of fractional moments of the n-particle Green function, and related bounds on the eigenfunction correlators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman M., Molchanov S.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157, 245–278 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Aizenman M.: Localization at weak disorder: some elementary bounds. Rev. Math. Phys. 6, 1163–1182 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aizenman M., Schenker J.H., Friedrich R.M., Hundertmark D.: Finite-volume criteria for Anderson localization. Commun. Math. Phys. 224, 219–253 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Aizenman M., Elgart A., Naboko S., Schenker J.H., Stolz G.: Moment analysis for localization in random Schrödinger operators. Invent. Math. 163, 343–413 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Basko D.M., Aleiner I.L., Altshuler B.L.: Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006)

    Article  MATH  ADS  Google Scholar 

  6. Boole G.: On the comparison of transcendents, with certain applications to the theory of definite integrals. Philos. Trans. Royal. Soc. 147, 780 (1857)

    Google Scholar 

  7. Carmona R., Lacroix J.: Spectral Theory of Random Schrödinger Operators. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  8. Chulaevsky, V., Suhov, Y.M.: Anderson localisation for an interacting two-particle quantum system on \({{\mathbb Z}}\). Preprint, http://arxiv.org/abs/0705.0657v1[math-ph], 2007

  9. Chulaevsky V., Suhov Y.M.: Wegner bounds for a two-particle tight binding model. Commun. Math. Phys. 283, 479–489 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Chulaevsky, V., Suhov, Y.M.: Eigenfunctions in a two-particle Anderson tight-binding model. To appear in Commun. Math. Phys. DOI:10.1007/s00220-008-0721-0, 2009

  11. Combes J.-M., Hislop P.D.: Localization for some continuous, random Hamiltonians in d-dimensions. J. Funct. Anal. 124, 149–180 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. von Dreifus H., Klein A.: A new proof of localization in the anderson tight binding model. Commun. Math. Phys. 124, 285–299 (1989)

    Article  MATH  ADS  Google Scholar 

  13. Fröhlich J., Spencer T.: Absence of diffusion in the anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88, 151–184 (1983)

    Article  MATH  ADS  Google Scholar 

  14. Germinet F., Klein A.: Bootstrap Multiscale Analysis and Localization in Random Media. Commun. Math. Phys. 222, 415–448 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Germinet F., Klein A.: New characterizations of the region of complete localization for random schrödinger operators. J. Stat. Phys. 122, 73–94 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)

    MATH  Google Scholar 

  17. Kirsch W.: A Wegner estimate for multi-particle random hamiltonians. J. Math. Phys. Anal. Geom. 4, 121–127 (2008)

    MATH  MathSciNet  Google Scholar 

  18. Kirsch, W.: An invitation to random Schrödinger operators (with appendix by F. Klopp). In: Random Schrödinger Operators. Disertori, M., Kirsch, W., Klein, A., Klopp, F., Rivasseau, V. (eds.), Panoramas et Synthèses 25, Paris: Soc. Math. de France, 2008, pp. 1–119

  19. Kotani, S.: Lyaponov exponents and spectra for one-dimensional random Schrödinger operators. In: Proc. Conf. on Random Matrices and their Appl., Contemp. Math. 50, Providece, RI: Amer. Math. Soc., 1986

  20. Pastur L., Figotin A.: Spectra of Random and Almost-Periodic Operators. Springer, Berlin (1992)

    MATH  Google Scholar 

  21. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I+III: Functional analysis (Revised and enlarged edition)+Scattering theory. New York: Academic Press, 1979/80

  22. Simon B., Wolff T.: Singular continuous spectrum under rank one perturbations and localization for random hamiltonians. Commun. Pure Appl. Math. 39, 75–90 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Stollmann P.: Caught by Disorder: Bound States in Random Media. Birkhäuser, Boston (2001)

    MATH  Google Scholar 

  24. Wegner F.: Bounds on the density of states in disordered systems. Z. Physik B 44, 9–15 (1981)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Aizenman.

Additional information

Communicated by B. Simon

© 2009 The Authors. Reproduction of this article for non-commercial purposes by any means is permitted.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aizenman, M., Warzel, S. Localization Bounds for Multiparticle Systems. Commun. Math. Phys. 290, 903–934 (2009). https://doi.org/10.1007/s00220-009-0792-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0792-6

Keywords

Navigation